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—— Abstract

Proving formula depth lower bounds is a fundamental challenge in complexity theory, with the

strongest known bound of (3 — o(1)) logn established by Héstad over 25 years ago. The Karchmer—
Raz-Wigderson (KRW) conjecture offers a promising approach to advance these bounds and separate
P from NC'. It suggests that the depth complexity of a function composition f ¢ g approximates the
sum of the depth complexities of f and g.

The Karchmer—Wigderson (KW) relation framework translates formula depth into communication
complexity, restating the KRW conjecture as CC(KWy¢ o KW, ) = CC(KWy) + CC(KW,). Prior work
has confirmed the conjecture under various relaxations, often replacing one or both KW relations
with the universal relation or constraining the communication game through strong composition.

In this paper, we examine the strong composition KWxor ® KW/ of the parity function and
a random Boolean function f. We prove that with probability 1 — o(1), any protocol solving
this composition requires at least n®7°M leaves. This result establishes a depth lower bound of
(3 — 0(1)) log n, matching Hastad’s bound, but is applicable to a broader class of inner functions,
even when the outer function is simple. Though bounds for the strong composition do not translate
directly to formula depth bounds, they usually help to analyze the standard composition (of the
corresponding two functions) which is directly related to formula depth.

Our proof utilizes formal complexity measures. First, we apply Khrapchenko’s method to show
that numerous instances of f remain unsolved after several communication steps. Subsequently, we
transition to a different formal complexity measure to demonstrate that the remaining communication
problem is at least as hard as KWor ® KW/. This hybrid approach not only achieves the desired
lower bound, but also introduces a novel technique for analyzing formula depth, potentially informing
future research in complexity theory.
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Strong Composition of XOR and a Random Function

1 Introduction

Proving formula depth lower bounds is an important and difficult challenge in complexity
theory: the strongest known lower bound (3—o0(1)) log n proved by Hastad [6] (following a line
of works starting from Subbotovskaya [17, 9, 16]) remains unbeaten for more than 25 years
already (in 2014, Tal [18] improved lower order terms in this lower bound). One of the
most actively studied approaches to this problem is the one suggested by Karchmer, Raz,
and Wigderson [11]. They conjectured that the naive approach of computing a composition
of two functions is close to optimal. Namely, for two Boolean functions f: {0,1}™ — {0, 1}
and g: {0,1}"™ — {0,1}, define their composition f ¢ g: {0,1}"™*™ — {0,1} as a function
that first applies g to every row of the input matrix and then applies f to the resulting
column vector. The KRW conjecture then states that D(f ¢ g) is close to D(f) + D(g), where
D(:) denotes the minimum depth of a de Morgan formula computing the given function.
Karchmer, Raz, and Wigderson [11] proved that if the conjecture is true, then P ¢ NC!,
that is, there are functions in P that cannot be computed in logarithmic parallel time.

A convenient way of studying the KRW conjecture is through the framework of Karchmer—
Wigderson relation [12]. It not only allows one to apply the tools from communication
complexity, but also suggests various important special cases of the conjecture. For a function
f:{0,1}" — {0, 1}, the relation KWy is defined as follows:

KW; = {(a,b,i): a € f~1(1),b € f~1(0),i € [n],a; # b;}.

The communication complexity CC(KW ) of this relation is the minimum number of bits
that Alice and Bob need to exchange to solve the following communication problem: Alice
is given a € f~1(1), Bob is given b € f~1(0), and their goal is to find an index i € [n]
such that (a,b,i) € KW/ (i.e., a; # b;). Karchmer and Wigderson [12] proved that, for
any function f, the communication complexity of KWy is equal to the depth complexity
of f: CC(KWy) = D(f). Within this framework, the KRW conjecture is restated as follows:
CC(KWj o KW,) is close to CC(KWy) 4+ CC(KW,,) (where KW o KW, is another name for
KW foq)-

One natural way of relaxing the conjecture is to replace one or both of the two relations
KW, and KW, by the universal relation, defined as follows:

Un ={(a,b,i): a,b € {0,1}",a # b,i € [n],a; # b; }.

Using a universal relation instead of the Karchmer—Wigderson relation makes the correspond-
ing communication game only harder, hence proving lower bounds for it is potentially easier
and could lead to the resolution of the original conjecture. For this reason, such relaxations
have been studied intensively.

Edmonds et al. [4] proved the KRW conjecture for the composition Uy, ¢ U, of two
universal relations using communication complexity methods. Hastad and Wigderson [7]
improved it for a higher degree of composition using a different approach. Karchmer et al. [11]
extended this result to monotone functions. Hastad [6] demonstrated the conjecture for the
composition f ¢ XOR,, of an arbitrary function f: {0,1}™ — {0, 1} with the parity function
XOR;,. This was later reaffirmed by Dinur and Meir [3] through a communication complexity
approach. Further advancements were made by Gavinsky et al. [5] who established the
conjecture for the composition f ¢ U, of any non-constant function f: {0,1}"™ — {0,1}
with the universal relation U,. Mihajlin and Smal [15] proved the KRW conjecture for
the composition of a universal relation with certain hard functions using XOR-composition.
Subsequently, Wu [20] improved this result by extending it to the composition of a universal
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relation with a wider range of functions (though still not with the majority of them).
de Rezende et al. [2] proved the conjecture in a semi-monotone setting for a wide range
of functions g.

Another natural way of relaxing the initial conjecture is to constrain the communication
game (instead of allowing for more inputs for the game). In the strong composition KW @KW,
Alice receives X € (f ¢ g)~1(1) and Bob receives Y € (f ¢ g)~*(0), and their objective
is to identify a pair of indices (i, j) such that X; ; # Y; ;, similar to the regular composition.
However, this time it must hold additionally that g(X;) # ¢(Y;). Intuitively, this should
force Alice and Bob to first determine the index ¢ and then to find the index j. This way
of relaxing the conjecture was considered in a number of previous papers and was formalized
recently by Meir [14]. Héastad and Wigderson, in their proof of the lower bound for two
universal relations, initially establish the result for what they call the extended universal
relation, a concept closely related to strong composition. Similarly, Karchmer et al. [11]
demonstrate that, in the monotone setting, strong composition coincides with the standard
composition. de Rezende et al. [2] utilized this notion, although without explicitly naming it.
Meir [14] formalized the notion of strong composition in his proof of the relaxation of the
KRW conjecture.

» Theorem 1 (Meir, [14]). There exists a constant v > 0.04 such that for every non-constant
function f:{0,1}™ — {0,1} and for all n € N, there exists a function g: {0,1}" — {0,1}
such that

CC(KW; ® KW,) > log L(KW) — (1 — v)m + n — O(log(mn)).

1.1 Our Result

In this paper, we study the strong composition KWxor,, ® KW, of the parity function
XOR,, with a random function f: {0,1}°8™ — {0,1}. It is not difficult to see that the
communication complexity of the corresponding game is at most 3logn, where n = m logm:
KW/ can be solved in log m bits of communication, whereas KWxor,, can be solved in 2logm
bits of communication (using the standard divide-and-conquer approach). We prove that
if the function f is balanced and hard to approximate (which happens with probability
1 —0(1)), then the bound 3logn is essentially optimal. Below, we state the result in terms
of the protocol size (i.e., the number of leaves), rather than depth, since this gives a more
general lower bound. In particular, it immediately implies a (3 — o(1))logn depth lower
bound.

» Theorem 2. With probability 1 — o(1), for a random function f: {0,1}1°8™ — {0,1}, any
protocol solving KWxor,, ® KWy has at least n3=°M) leqves, where n = mlogm.

In contrast to many results mentioned above and similarly to the bound by de Rezende at
al. [2], our result works for a wide range of inner functions f. Indeed, many of the previous
techniques work well in the regime where the outer function is hard and give no strong lower
bounds when the outer function is easy (as it is the case with the XOR function). For example,
random restrictions (as one of the most successful methods for proving lower bounds) does
not seem to give meaningful lower bounds for KWxor,, ® KW¢, as under a random restriction
this composition turns into a XOR of a small number of variables which is easy to compute.
The lower bound by Meir (see Theorem 1) also gives strong lower bounds in the regime
where the outer function is hard (and only gives a trivial lower bound of the form o(logn)
for the function that we study).
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To prove the lower bound, we exploit formal complexity measures. Asin [4, 15], we consider
two stages of a protocol solving KWxor,, ® KW ;. During the first stage, we track the progress
using the classical measure by Khrapchenko [13] and ensure that even after many steps of the
protocol, there are still many instances of f that need to be solved. At the second stage,
we switch to another formal complexity measure and show that the remaining communication
problem is, roughly, not easier than KWor ® KW;. We believe that this proof technique
is interesting on its own, since it is not only easy to show that Khrapchenko’s measure cannot
give superquadratic size lower bounds, but it is also known that natural generalizations
of this measure are also unable to give stronger than quadratic lower bounds [8].

2 Notation, Known Facts, and Technical Lemmas

Throughout the paper, log denotes the binary logarithm whereas In denotes the natural
logarithm. By n we usually denote the size of the input. All asymptotic estimates are given
under an implicit assumption that n goes to infinity. By [n], we denote the set {1,2,...,n}.
By Ry we denote the set {x € R | z > 0}. We utilize the following asymptotic estimates for
binomial coefficients. For any constant 0 < o < 1,

Q(n—1/2)2h(a)n < (ann> < 2h(o¢)n7 (1)

where h(z) = —zlogx — (1 — z)log(1l — z) denotes the binary entropy function.

For a string z € {0,1}", its i-th bit of x is denoted by x;. For a matrix X € {0,1}™*"™
by X; we denote the i-th row of X and by X; ; we denote the bit of X in the intersection
of the i-th row and the j-th column.

2.1 Graphs

For a rooted tree, the depth of its node is the number of edges on the path from the node
to the root; the depth of the tree is the maximum depth of its nodes.

Let G(V, E) be a graph and @ # A C V be its nonempty subset of nodes. By G[4],
we denote a subgraph of G induced by A. By avgdeg(G, A), we denote the average degree
of A:

avgdeg(G, A) |A\ Zdeg (2)
veEA

For a biparite graph G(A U B, E) with nonempty parts, let
¥(G) = avedeg(G, A) - avgdeg(G, B) (3)
The lemma below shows that this graph measure is subadditive.

» Lemma 3. Let G(AU B, E) be a bipartite graph and A = Ay U Ag be a partition of A
into two parts. Let G, = G[Ap U B] and Gg = G[Ag U B]. Then,

Y(G) <P(GL) + (GRr).

Proof. Let Er, and ER be the set of edges of G, and G, respectively. Clearly, F = Ep LI ER.
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Then,

Y(G) <P(GL) +¢(Gr)

|EJ? o B N |Er|?
(ALl +[ArDIB| ~ |ALlIB] ~ |Agl|B]
|ELl® + |Er|* + 2|EL||Er| _ |EL® n |Er|?
|AL| + |ARg| ~ ALl |AR|
<= 2|EL||ER||ALl|Ar| < |Er[*|AL]> + |EL|*|AR|?

< 0 < (|Er|lAL| - |EL||AR|)*.

<

The next lemma shows that if G contains a node of small enough degree, then deleting it
not only does not drop %, but also does not drop too much the average degree of the parts.

» Lemma 4. Let a node a € A of a bipartite graph G(A U B, E) satisfy deg(G,a) <
avedeg(G, A)/2 and let A’ = A\ {a} and G'(A’UB,E") = G[A\ {a} U B]. Then,

V(G') = ¥(G), (4)
avgdeg(G', A') > avgdeg(G, A), ()

Proof. The inequality avgdeg(G’, A’) > avgdeg(G, A) holds since A’ results from A by re-
moving a node of degree less than the average degree.
To prove the inequality (4), let d = deg(G, a). Then, |E'| = |E| — d and

(E|-dp _ |EP
(1T - DIB] = [4]IB]
|E]?2 - 2|E|d + d? |EJ?

V(G =2 Y(G) =

(A[-DIB = [A]B|
B —2d _ |E|

>
[AT—1 = |4]

> |E[|A] - 2d|A] = [E|(JA] - 1)

|E| _ avgdeg(G,A)
<— < = .
ds 2|4 2

2.2 Boolean Functions

By B,, we denote the set of all Boolean functions on n variables. For two disjoint sets
A,B C {0,1}", the set A x B is called a combinatorial rectangle, and it is called full if
A and B form a partition of {0,1}". Clearly, there is a bijection between B, and full
combinatorial rectangles. For f € B,,, by Ry = f~*(1) x f~1(0), we denote the corresponding
full rectangle. We say that a Boolean function f is balanced if |f=1(0)] = |f~1(1)].

In this paper, it will prove convenient to apply a function g € B,,, not only to Boolean
vectors & € {0,1}™, but also to matrices X € {0,1}"*™:

ie., g(X) € {0,1}" results by applying g to every row of X. This allows to define a composi-
tion in a natural way. For f € B, and g € B,,, their composition f o g: {0,1}™*" — {0,1}
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treats the input as an m x n matrix and first applies g to all its rows and then applies f
to the resulting column-vector:

fog(X)=f(9(X)) = flg(X1),...,9(Xm))

For a set of matrices X C {0,1}™*", by i-th projection proj, X', we denote the set of all i-th
rows among the matrices of X

proj, ¥ = {X;: X e X} ={t € {0,1}": IX € X: t = X;}. (6)

In the proof of the main result, we will be dealing with Boolean matrices of dimension
n x logn. Let X C {0,1}"*1°8™ be a set of such matrices. We say that X is a-bounded if
| proj; X| < an, for all i € [n]. The i-th projection of X is called sparse if |proj, X| < %n,
and dense otherwise. The following lemma shows that if |X| is large and X is a-bounded,
then the number of sparse projections of X’ is low. Later on, we will be applying this lemma
for X which is almost 0.5-bounded and whose size gradually decreases to argue that the
number of sparse projections cannot grow too fast.

» Lemma 5. Let k€ N and o € (2,3). If X C {0,1}"X1°8" is a-bounded and |X| > a"g:,

then the number of sparse projections of X does not exceed O(k).

Proof. Let §; € [0, 1] be such that | proj; X| = S;an. The i-th projection is sparse if and only
if B; < 8%. Let ¢ be the number of sparse projections and assume, without loss of generality,
that the first ¢ projections are sparse. Then,

’I’Lnn S 3 ’ﬂn
o o < 1| < [ Iproj; ¥| = (an)" [[ 8 =
i=1 i=1
i<f[ﬁ»—1_[54 f[ﬂ< 3 t:>k;lo *18—a>t
ok = 11Pe= 117 = \8a & 3 ="

2.3 Boolean Formulas

The computational model studied in this paper is de Morgan formulas: it is a binary tree
whose leaves are labeled by variables z1,...,x, and their negations whereas internal nodes
(called gates) are labeled by V and A (binary disjunction and conjunction, respectively). Such
a formula computes a Boolean function f(x1,...,x,) € B,,. We also say that a formula F’
separates a rectangle A x B, if f(a) = 1 and f(b) = 0, for all (a,b) € A x B. This way,
if a formula F' computes a function f, then it separates Ry.

For a formula F, the size L(F) is defined as the number of leaves in F. This extends
to Boolean functions: for f € B,,, by L(f) we denote the smallest size of a formula computing f.
Similarly, the depth D(F') is the depth of the tree whereas D(f) is the smallest depth of
a formula computing f.

It is known that formulas can be balanced: D(f) = ©(logL(f)) (see references in [10,
Section 6.1]): this is proved by showing that, for any formula F, there exists an equivalent
formula F’ with L(F”") < L(F)°™M and D(F’) < O(log L(F)). The following theorem further
refines this: by allowing a larger constant in the depth upper bound, one can control the size
of the resulting balanced formula.

» Theorem 6 ([1]). For any k > 2 and any formula F', there exists an equivalent formula F’

satisfying D(F') < 3In2 -k -logL(F) and L(F') < L(F)Y, where vy =1+ m.
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Using a counting argument, one can show that, with probability 1 — o(1), for a random
Boolean function f € B, L(f) = ©(2"/logn). To prove this, one compares the number
of small size formulas with the number of Boolean functions |B,,| = 22", using the following
estimate (see [10, Lemma 1.23]). It ensures that the number of formulas of size at most

n .
100210gn is o(|B,|):

on log(17n) gn
(17”) T00logn — 92T00logn

» Lemma 7. For all large enough I, the number of Boolean formulas over n variables with
at most [ leaves is at most

(17n)". (7)

Proof. The number of binary trees with [ leaves is at most 4!. For each such tree, there are
at most (4n)! ways to convert it into a de Morgan formula: there are 2n input literals for the
leaves and two operations for each internal gate. Consequently, the total number of formulas
with at most [ leaves is at most

1-48 (4n)t =1-16" - n' < (17n)!,
which is true for [ > 71. |

A formula F' approzimates a Boolean function f if f and F agree on at least a 3/4 fraction
of all the inputs:
P =F > 3/4.
LPr f@) = F@) 2 3/

Below, we show that with probability 1 — o(1), a random Boolean function is hard not only
to compute, but also to approximate by formulas.
We say that f € B, is a-balanced if

2" < |FHO)LIF )] < (1—a) - 2"
e, [IF71O)] = £ )] < (1 - 2a)27,

» Lemma 8. For all sufficiently large n and any constant % <a< %, a random function
from B, is a-balanced and any formula approximating it has size Q(%), with probability
1—o0(1).

Proof. For a formula over n variables, the number of Boolean functions it approximates
is at most (by the estimate (1))

omn 2" /4
on 2n on b1
E _ § < 9n < 9n . 9h(1/4)2 )
(d) (d)_2 <2”/4)_2 ?
d=3-2m /4 d=0

Combining this with (7), we get that the number of functions approximated by formulas
of size % is at most

(17n)5%2"2h(1/4)2" _ 92" (ﬁ%wz(l/zx))wt.
For any constant 0 < 8 < 1 — h(1/4), this is a o(1) fraction of B,,.

Now, the probability that a random f € B,, is not a-balanced (i.e., ||f~1(0)|—|f~1(1)|| >
(1 —2a)-2") is at most

1 a2l rgn 1 on

n 2" (h(a)—=1)4+n+1 __

2 Y <i>§22"'2'0"2 .(a'2n>§2 (h(@)=1+n+1 _ (7).
=0

Thus, with probability 1 —o(1), a random f € B, is a-balanced and hard to approximate. <
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2.4 Karchmer-Wigderson Games

Karchmer and Wigderson [12] came up with the following characterization of Boolean
formulas. For a Boolean function f € B,, the Karchmer-Wigderson game KWy is the
following communication problem. Alice is given a € f~1(1), whereas Bob is given b € f~1(0),
and their goal is to find an index i € [n] such that a; # b;. A communication protocol for KW ¢
is a rooted binary tree whose leaves are labeled with indices from [n] and each internal node v
is labeled either by a function A,: f~1(1) — {0,1} or by a function B,: f~1(0) — {0,1}.
For any pair (a,b) € f~1(1) x f~1(0), one can reach a leave of the protocol by traversing
a path from the root to a leave: to determine to which of the two children to proceed from
a node v, one computes either A4,(a) or B,(b). We say that a protocol solves KWy, if for any
(a,b) € f~1(1) x f71(0), one reaches a leave i € [n] such that a; # b;. Similarly to formulas,
we say that a protocol separates a combinatorial rectangle A x B, if it works correctly for all
pairs (a,b) € A x B.

Karchmer and Wigderson showed that formulas computing f and protocols solving KW ¢
can be transformed (even mechanically) into one another. In particular, the smallest number
of leaves in the protocol solving KW is equal to L(f), whereas the smallest depth of a protocol
(also known as the communication complexity of KW, denoted by CC(KWy)) is nothing else
but D(f).

With each node of a protocol solving KW, one can associate a combinatorial rectangle
in a natural way. The root of the protocol corresponds to K. For the two children of Alice’s
node v with a rectangle A x B, one associates two rectangles Ay x B and A; x B, where
A; ={a € A: A)(a) = i}. This way, Alice splits the current rectangle horizontally. Similarly,
when Bob speaks, he splits the current rectangle vertically. Each leave of a protocol solving
KWy is associated with a monochromatic rectangle, i.e., a rectangle A x B such that there
exists ¢ € [n] for which a; # b; for all (a,b) € A x B.

For functions f € B, and g € B,,, the strong composition of KW, and KW, denoted
as KWy ® KW, is the following communication problem: Alice and Bob receive inputs
X e(fog) (1) and Y € (f o g)~1(0), respectively, and need to find indices (i, j) such that
Xi; #Yi; and g(X;) # g(Y;). We say that a protocol strongly separates sets X (f ¢ g)~'(1)
and Y C (f o g)~1(0), if it solves the strong composition KW ; ® KW, on inputs X x ).

2.5 Formal Complexity Measures

For f € B, define a bipartite graph G¢(f~1(1) U f~1(0), Ey) as follows:
Ep = {{u,v}: ue fH(1),v € f7H0),dn(u,v) = 1},

where dg is the Hamming distance. Khrapchenko [13] proved that, for any f € B,,, ¥(Gy) <
L(f) (recall (3) for the definition of ¢)(G)). This immediately gives a lower bound L(XOR,,) >
n?. Note the two useful properties of 9(Gf): on the one hand, it is a lower bound to L(f),
on the other hand, it is much easier to estimate than L(f).

Paterson [19, Section 8.8] noted that Khrapchenko’s approach can be cast as follows.
A function p: B, — Ry is called a formal complexity measure if it satisfies the following two
properties:
1. normalization: p(z;), u(T;) < 1, for all ¢ € [n],
2. subadditivity: u(fV g) < u(f) + p(g), for all f,g € B,,.
Note that Khrapchenko’s measure can be defined in this notation as ¢(f) = ¥(Gy). Its
subadditivity is shown in Lemma 3, whereas the normalization property can be easily seen.
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It is not difficult to see that L itself is a formal complexity measure. Moreover, it turns
out that it is the largest formal complexity measure.

» Lemma 9 (Lemma 8.1 in [19]). For any formal complexity measure y: B, — R and any

f € Bn, u(f) < L(f).

3 Proof of the Main Result
In this section, we prove the main result of the paper.

» Theorem 2. With probability 1 — o(1), for a random function f: {0,1}\°¢™ — {0,1}, any
protocol solving KWxor,, ® KWy has at least p3—o) leaves, where n = mlogm.

3.1 Proof Overview

We start by proving a lower bound on the size of any protocol solving KWxor,, ® KW¢ and
having a logarithmic depth. Then, using balancing techniques (see Theorem 6), we generalize
the size lower bound to all protocols.

To prove the lower bound, we take a random function f € Bjog, and argue, using Lemma 8,
that it is 0.49-balanced and hard to approximate with probability close to 1. We then fix
a set Z C {0,1}°8™ such that |Z| = 0.98m and f is balanced on Z: |Xy| = |Vo| = 0.49m,
where Xy = f~1(1) N Z and Yy = f~1(0) N Z.

We prove a lower bound for any protocol that strongly separates KWxor,, ® KWy on
inputs Xr x Yr (which are defined later). To this end, we associate, with nodes of the
protocol, a graph similar to Gxor,, and use Khrapchenko’s measure to track the progress
of the protocol. A node of the graph is associated with all inputs X having the same vector
f(X). The reasoning is that, in a natural scenario, the protocol will first solve XOR,,,
followed by solving f, implying that the protocol does not need to distinguish between X
and X’ in the initial rounds, if f(X) = f(X'). We connect two graph nodes by an edge
if their vectors differ in exactly one coordinate.

We aim to ensure that each edge in the graph has a large projection: for any two nodes
connected by an edge, the elements of blocks associated with them cover a substantial number
of inputs for the function f. There will be no small protocol capable of solving the problem
within these two blocks since f is hard to approximate. This is the rationale behind ensuring
that all edges in the graph have large projections on both sides. To achieve this, we enforce
that each block that is associated with a node shrinks by at most a factor of two at each
step of the protocol. This process ensures that a significant number of edges in the graph
will maintain large projections on both sides.

Once the Khrapchenko measure becomes sufficiently small, we can assert that XOR,, is
nearly solved, and the protocol, in a sense, must now solve an instance of ORy; ® f. Using
the fact that solving each edge independently is hard, we conclude that solving an ORy; ® f
over these edges should be as difficult as approximately d - L(f).

3.2 Proof

Throughout this section, we assume that m is large enough and f € Biog 1, is a fixed function
that is 0.49-balanced and can be approximated by formulas of size 2(m/loglogm) only.
(Recall that Lemma 8 ensures that a random function from Bj,g ,,, satisfies these two properties
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with probability 1 — o(1).) Fix sets Xy € f~(1), Yo € f~1(0) of size 0.49m and let

Xr ={X €{0,1}™*1s™ . (XOR,, ¢ f)(X) =1AX; € Xy Uy, Vi € [m]}, (8)
Vr ={Y € {0,1}™*18™ . (XOR,, o f)(Y) =0AY; € Xy Uy, Vi € [m]}. (9)

Let o > 0 be a constant and P be a protocol that strongly separates X1 x Ypr and has
depth at most alogm. Recall that each node S of P is associated with a rectangle Xg x YVg.
We build a subtree D of P having the same root and associate a graph Gy to every node NV
of D. The graphs G are built inductively from the graphs associated with the parents of N
as explained below, but all these graphs are subsets of the m-dimensional hypercube: the
set of nodes of each such graph is a subset of {0,1}" and for each edge {u, v} it holds that
dg(u,v) = 1.

For the root T of the protocol P, the graph Gr is simply Gxor,, (which is nothing
else but the m-dimensional hypercube): its set of nodes is {0, 1}, two nodes are joined
by an edge with label ¢ if they differ in the i-th coordinate.

For any node v of the graph Gg, we associate the following set of inputs called block:

Bs(v) = {X € {0,1}™16™: X € X5 Vs and f(X) = v}.

We say that an edge {u,v} with label i of Gg is heavy if the projection of both Bg(u) and
Bs(v) onto the ith coordinate is dense, i.e.,

. . 3
| proj; Bs(u)|, | proj; Bs(v)| > 3

and light otherwise.
Since the nodes of the graph Gg form a subset of {0,1}™, we can naturally divide them
into two parts, as their blocks correspond to subsets of either Xg or Vg.

As = {U S V(Gs) | XORm(’U) = 1}
Bs ={v € V(Gs) | XORy(v) = 0}

For a graph Gg, we define d4(Gg) as the average degree of the part Ag and dg(Ggs) as the
average degree of the part Bg. We say that a graph Gg is special if

min{d(Gs),ds(Gs)} < 12alog? m.

We will construct the tree D inductively. For a node S in the tree D, we either stop
the process if Gg is special, or construct the two children of S from the protocol P and
their graphs. We continue building D on these two children inductively. Hence, all graphs
corresponding to internal nodes of the tree D are not special, while all graphs associated
with leaves of D are special.

» Definition 10. A graph Gg, associated with a node S in the tree D, is adjusted if all its
edges are heavy and

da(Gs)
2

dp(Gs)
2

deg(v) > , Vv e Ag and deg(v) > , Vv € Bg. (10)

We will ensure that all graphs Gg for any node S in the tree D are adjusted.

» Lemma 11. For each node v of the graph G (associated with the root T of the protocol P),
1. the degree of v is m;
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2. |proj; Br(v)| = 0.49m, for alli € [m];
3. |Bp(v)| = L28m)™

om

Proof. Nodes of Gr are m-dimensional binary vectors, hence deg(v) = m.

To prove the second property, recall that f is balanced on Xy U Vy. If v; = 1 (or v; = 0),
for some i € [m], the i-th projection can take any value from Xy (), respectively). Hence,
| proj; Br(v)| = 0.49m.

Finally, to prove the third property, note the Gp has 2™ nodes and for each vertex v
the size of the block Br(v) is at most (0.49m)™. Therefore, since each input from Xp U Yr
belongs to exactly one block that is associated with a node from Gp and |Xp U Yr| =
|2 U o™ = (0.98m)™, |Br(v)| = @28m)™ <

om

Lemma 11 ensures that the graph G is adjusted and not special, thus the root T has
two children. Using the function B, we show how to construct an intermediate graph Hy for
some child of a node S in the tree D and then we apply some cleanup procedures for the
graph Hy to construct a graph G . Recall that each step of P partitions the set of either
Alice’s or Bob’s inputs into two parts. Let G be a graph for some node S of the protocol P
that is associated with a rectangle Xg x Vg and assume, without loss of generality, that it is
Alice’s turn. Therefore, graph G is not special, otherwise we will stop the building process
of the subtree of S. Let St be the left child of S in the protocol P and Si be the right child.
We add the same children of the node S in the tree D. Then, we put v from Bg into both
Hgs, and Hg, (since the block Bg(v) has not changed). For each node v € Ag we decide in
which of the two graphs we will put it. The block Bg(v) is also split into two: Bg, (v) and
Bs,, (v), corresponding to the two ways of the protocol. We assign v to the left graph Hg, if
2 |Bg, (v)| > |Bs(v)|, and to the right graph Hg, if 2 - |Bg, (v)| > |Bs(v)|. An edge {u,v}
from the edges of Gg goes to Hg, if and only if both u and v are assigned to Hg,. The
same rule applies for edges in Hg,. This approach ensures that the size of each block Bg(v)
shrinks by at most a factor of two when transitioning from a parent to a child in the tree D.
Then, the graphs G'g, and Gg, will be built using graphs Hg, and Hg,, respectively.

The idea of the structure of the graph Gg arises from Khrapchenko’s graph, so we will
use the same measure:

Y(Gs) =da(Gs)-dp(Gs).

Lemma 3 states that 1 is subadditive.

After obtaining the graph H¢ for a node C of the tree D, we make our first cleanup
by deleting all light edges: let H{, be a graph resulting from H¢ by removing all its light
edges. The next lemma shows that this does not drop the measure i) too much.

» Lemma 12.

o) = vie) (1- ).
Proof. Let S be the parent of C' in D. Since S is not a leaf, we have that
min{da(Gs),ds(Gs)} > 12alog®m and the degree of every node in G is at least half
of the average degree of its part. Without loss of generality, assume that inputs were deleted
from Xg, and therefore da(H¢) > % > 6alog? m.

An edge {u,v} can become light because of only one of its endpoints, because the blocks
on the other side remain unchanged. From Lemma 11, we know that the initial size of each
block is (0.49m)™, and after each step of the protocol, the size of a block shrinks by at most

11



12

Strong Composition of XOR and a Random Function

a factor of two. Hence, for any node v, the size of its block Bg(v) is at least (%f?!gr)nm , because

the protocol depth is bounded by «logm. Hence, we can bound the number of light edges
incident to v by 3alogm using Lemma 5 (since log™*(8 - 0.49/3) < 3). Therefore,

dA(H/C) > dA(Hc) — 3alogm.

Now, consider dg(H{,). Let Ec be the set of edges in He, whereas Ac and B be its
parts of nodes. Then,

Ec —|Ac| - 3alogm
|Bo|

=dp(Hc) — 3a logmM

dp(H¢) > .
plfle) = Bl

Hence,

G(HL) = da(Hb)dp(HY) > (da(He) — 3alogm) (dB<Hc> 3a 1ogm"40')

|Bc|
> ¢(He) —3adp(He)logm — 3aAC|d|AB(If|c)10gm
c
_ _ 3alogm 3a|Ac|1ogm>
=Y(Hc) (1 T e
= Galogm
- otiie) (1= 55 )
> y(H )(l_ﬁalogm> W )<1_ i )
¢ 6 long o c ogm )

<

The next lemma shows how to construct an adjusted graph G¢, from the intermediate
graph H(..

» Lemma 13. There exists a subgraph Gc of the graph H(, such that G¢ is adjusted and
¥(Ge) 2 w(He) (1~ k).

Proof. To get G¢, we keep removing nodes from H{, until it satisfies (10). If (10) is violated,

there exists, without loss of generality, a node v € A¢ such that deg(v) < %. Let
= Gc \ {v}. Lemma 4 guarantees that this does not decrease the measure. This process
is clearly finite. <

This way, we construct the graph G¢ for the node C. If C is not special, we continue
expanding the subtree rooted at C. Recall also that, for each internal node S of the tree D,
whose children are Sy and Sg, the following holds:

w(GS) < w(HSL) + ¢(HSL)'

Hence, combining it with Lemma 13 we have:
1
1—-— < . 11
0(Gs) (1 o) < () + 0(Gisy) (1)
On the other hand, if S is special, we will use the following two lemmas to argue that strongly

separating Xg x Vg is still difficult.

» Lemma 14. Let S be a node of the tree D such that it has a node v € Gg having d adjacent

edges. Then, any protocol that strongly separates Xs and Vs has at least €) (logﬁgg m) leaves.
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Proof. Consider the subgraph of GGg induced by v and its neighbors w1, ..., uy connected
to v. Denote by I; the label of the edge {v,u;}. Define a measure £ on subrectangles of
Xs X Vs:

d
§(X x V) =YL (KW (proj, B x proj;, B;)),
i=1
where X C Xg, Y C Vg, B=XNBg(v) and B, =Y N Bs(u;), for all ¢ € [d]. We prove that
any protocol strongly separating Xs X Vs requires at least £(Xs x Vs) leaves.

Tt is easy to see that £ is subadditive, being a sum of subadditive measures: if X = X’'UX",
then (X x V) < (X' x V) 4+ £(X” x V) and the same applies when we split ). Consider
a protocol P’ strongly separating Xs x Vs and its leaf L associated with a rectangle of inputs
X' x V' We show that (X', x V') < 1. Since L is a leaf, there exists 4, j such that for
each X e X'pandY € )':

Xij #Yi; and  f(X;) # f(Vi).

Let k be such that By # & (if all B; are empty, then £ = 0). Then, B(u:) = &, for all t # k,
as otherwise there would be no i such that f(X;) # f(Y;) for all (X,Y) € X', x V', since
uy, differs from v in the position lj, and u; differs from v in the position l; and [ # l;. Thus,
if §(X'p xY'L) > 1, then L(KW(proj;, B x proj;, Bi)) > 1, which contradicts to the existence
of a pair (i, 7).

Thus, £ is normal (has the value at most 1 for any leaf of any protocol that strongly
separates Xs X Vs) and subadditive. Hence, its value for the whole protocol P’ is a lower
bound on the size of P’. Thus, it remains to estimate £ for P’.

Since all d edges are heavy, we have:

. . 3 .
[proj,, Bs(v)| + | projy, Bs(us)| > Jm. Vi € [d].

Since the function f cannot be approximated by small-size formulas, it follows that

. 3 m
L(KW(prOJli Bs(v) x proj,, Bs(u;))) = Q (loglogm) )

for all ¢ € [d]. Summing over all ¢ € [d], gives the desired lower bound. <

» Lemma 15. For a special node S of the tree D, the number of leaves in any protocol
strongly separating Xs X Vg is

0 (w(Gs> : m) -

log® m loglogm
Proof. Assume, without loss of generality, that

dA(Gs) > dB(Gs) and dB(Gs> < 12a10g2 m.

Applying Lemma 14¢ to a node of degree at least d4(Gg), we get that the number of leaves
is at least

O (dA(Gs)m) _q ( P(Gs) _ m ) _ Q( (Gs)m )
loglog m dp(Gs) loglogm log? mloglogm /)
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At this point, everything is ready to lower bound the size of any protocol of logarithmic
depth.

» Theorem 16. The size of the protocol P (strongly separating Xr X Yr) is

3 1 alogm
o —— (1— ) .
log” mloglogm logm

Proof. Lemma 15 states that the number of leaves needed to resolve any leaf S of the tree
D is Q (1/1(G5) . m). Let S be the set of all leaves of the tree D. Using estimate
(11), we have:

w(GT>~<1 : )mgmsZw(Gs»

logm Ses

Since ¥(G7) = m? (by Lemma 11), Then,

m m3 1 alogm
L(P)>Q Gil——— | >0 1— .
(P2 (Z v S)logzmloglogm> - <log2mloglogm < logm> )

Ses

L |
L >

logm

Recall that « is a constant. Assuming m > 4, we have logm > 2, and thus 1 —

__2_
e Tem . Then,

3 alogm 3
m 1 m 2 . _
<1 ) > e Tem alogmzmii €

log® m ~ logm ~ log®m

)

for any constant € > 0 when m is sufficiently large. Hence, the number of leaves needed for a
protocol P is m3—°W).
Finally, we get rid of the assumption that the depth of P is logarithmic and prove the

main result.

Proof of Theorem 2. Let P be a protocol with m3~¢ leaves for some £ > 0 solving KWxoRr,,, ®
KW;. We transform it into a protocol P’ with m?3=¢) leaves and depth bounded by
3(3—¢)kIn2-logm, by applying Theorem 6, where v =1+ m. (Theorem 6 is stated
in terms of formulas, but it is not difficult to see that it works also for protocols for strong
composition.)

Since € > 0 and limy_,, v = 1, there exist k and ¢’ > 0 such that v(3—¢) < 3—¢’. Hence,
protocol P’ has logarithmic depth and at most m3—¢ leaves, which contradicts Theorem 16.

Therefore, P has m3—°(1) = p3—°(1) leaves. |
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