
Abstract

Below are all the theorems proven during the course, organized by exam questions.
One day before the exam, you will be randomly assigned a ticket. During the exam, you

must present its content orally (including proofs of all statements). You are required to know
all definitions that appear in your ticket (and in the proofs). Supporting materials during your
presentation are not allowed.

While presenting, you may use statements from other tickets without proof. Pictures during
your proofs are highly appreciated.

If you think a statement contains a typo, feel free to discuss it in a chat.

Definitions

• dG(v) – degree of the vertex v in G.

• NG(X) – all neighbours of the set X in the graph G.

• δ(G) – minimal degree in G.

• G+ ab, is the graph G with a new edge between a,b ∈ V(G).

• G · ab, is the graph where the edge ab is contracted, ab ∈ E(G).

• c(G) – number of connected components.

• o(G) – number of odd components.

• α(G) – independence number.

• α ′(G) – maximal matching.

• β(G) – minimal vertex cover.

• β ′(G) – minimal edge cover.

• χG(k) – chromatic polynomial.

• g(G) – girth.

• κ(G) – graphs connectivity.

• κG(x,y) – size of the smallest set separating x and y, where x,y ∈ V(G).

• κG(X, Y) – size of the smallest set separating X and Y, where X, Y ⊂ V(G).

• R(G) – set of all separating sets of the graph G. We call the set R separating if the graph G− R

is disconnected.

• Rk(G) – set of all k-vertex separating sets of the graph G.

• Let S ⊂ R(G). A set A ⊂ V(G) is a part of the S-partition if no set from S separates any two
vertices from A, but any other vertex of the graph G is separated from A by at least one set from
S. The set of all parts of the partition of graph G by the separating sets S will be denoted as
Part(S).

• A vertex of a part A ∈ Part(S) is called internal if it does not belong to any set from S. The set
of such vertices will be called the interior of part A and denoted as Int(A).

Vertices that belong to some set from S are called boundary vertices, and their set — the boundary
— is denoted by Bound(A).
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• S, T ∈ Rk(G) – independent if S does not separate T and T does not separate S. Otherwise, they
are dependent.

• S ∈ Rk(G),H – a connected component of the graph G−S. We call H a fragment. S – boundary
Bound(H).

Paths and Cycles

1.

Lemma 1. Let n ⩾ 2, and let a1, . . . ,an be the maximal path in the graph G, such that

dG(a1) + dG(an) ⩾ n.

Then the graph contains a cycle of length n.

Theorem 1 (O. Ore, 1960).

a) If for any two non-adjacent vertices u, v ∈ V(G), the condition

dG(u) + dG(v) ⩾ v(G) − 1

holds, then the graph G contains a Hamiltonian path.

b) If v(G) > 2 and for any two non-adjacent vertices u, v ∈ V(G), the condition

dG(u) + dG(v) ⩾ v(G)

holds, then the graph G contains a Hamiltonian cycle.

Corollary 1 (G. A. Dirac, 1952).

a) If δ(G) ⩾ v(G)−1
2 , then the graph G contains a Hamiltonian path.

b) If δ(G) ⩾ v(G)
2 , then the graph G contains a Hamiltonian cycle.

2.

Lemma 2. Let ab /∈ E(G) and dG(a) + dG(b) ⩾ v(G). Then the graph G is Hamiltonian if and
only if the graph G+ ab is Hamiltonian.

Corollary 2 (V. Chvátal, 1974). The graph G is Hamiltonian if and only if its closure C(G) is a
Hamiltonian graph.

Lemma 3. The closure of a graph G is uniquely determined (it does not depend on the order of edge
additions).

3.

Lemma 4. Let the graph G be Hamiltonian. Then, for any subset S ⊂ V(G), the inequality

c(G− S) ⩽ |S|

holds, where c(G− S) is the number of connected components in the graph G− S.

Theorem 2 (V. Chvátal, P. Erdős, 1972). Let v(G) ⩾ 3 and κ(G) ⩾ α(G). Then G is Hamiltonian.

4.
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Theorem 3 (L. Pósa, 1962). Let G be a graph with v(G) = n > 2 satisfying the following two
conditions:

a) For any k ∈ N, k < n−1
2 , the graph G contains fewer than k vertices of degree at most k.

b) If n is odd, then the graph G contains no more than n−1
2 vertices of degree at most n−1

2 .

Then G is Hamiltonian.

Theorem 4 (V. Chvátal, 1972). Let 0 ⩽ a1 ⩽ a2 ⩽ · · · ⩽ an ⩽ n− 1, where n ⩾ 3. The following
two statements are equivalent:

a) The sequence a1, . . . ,an is Hamiltonian.

b) For every s < n
2 , if as ⩽ s, then an−s ⩾ n− s.

5.

Theorem 5 (G. Chartrand, S. F. Kapoor, 1969). For any connected graph G with v(G) ⩾ 3 and an
edge e ∈ E(G), the graph G3 contains a Hamiltonian cycle that includes the edge e.

Theorem 6 (W. T. Tutte). Let k,g,n ∈ N, where k,g ⩾ 3, n > kg, and kn is even. Then there
exists a regular graph G of degree k with g(G) = g and v(G) = n.

Matchings

6.

Lemma 5.

a) U ⊆ V(G) is an independent set iff V(G) \U is a vertex cover.

b) α(G) + β(G) = v(G).

Theorem 7 (T. Gallai, 1959). Let G s.t. δ(G) > 0, then α ′(G) + β ′(G) = v(G).

Theorem 8 (C. Berge, 1957). A matching M in a graph G is maximum if and only if there are no
M-augmenting paths.

7.

Theorem 9 (P. Hall, 1935). A bipartite graph G has a matching that covers all vertices of V1 if and
only if for any subset U ⊂ V1, the following holds:

|U| ⩽ |NG(U)|.

Proof can be omitted.

Corollary 3. If δ(V1) ⩾ k and ∆(V2) ⩽ k, then there is a matching covering V1.

Theorem 10 (W. T. Tutte, 1947). A graph G has a perfect matching if and only if for any S ⊂ V(G)
the following condition holds: o(G− S) ⩽ |S|.

8.

Theorem 11 (Petersen, 1891). Let G be a connected cubic graph with at most two bridges. Then G

has a perfect matching.

Example 1. Draw a cubic graph with three edges that has no perfect matching.
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Theorem 12 (Plesnik, 1972). Let G be a regular with degree k and v(G) ≡2 0, s.t. λ(G) ⩾ k− 1.
Let G ′ be a graph obtained from G by removing at most k−1 edges. Then, there is a perfect matching
in G ′.

Corollary 4. Let G be a regular degree k graph with v(G) ≡2 0. Also, λ(G) ⩾ k− 1, then for each
edge e ∈ E(G) there is a perfect matching containing e.

9. A k-factor of a graph G is a spanning k-regular subgraph.

Theorem 13 (J. Petersen, 1891). Every 2k-regular graph has a 2-factor.

Corollary 5. a) A 2k-regular graph is the union of k of its 2-factors.

b) For any r ⩽ k, a 2k-regular graph has a 2r-factor.

10.

Theorem 14 (C. Thomassen, 1981). Let G be a graph such that δ(G) ⩾ k and ∆(G) ⩽ k+ 1. Let
r < k, then there is a spanning subgraph H of G such that δ(H) ⩾ r and ∆(H) ⩽ r+ 1.

Theorem 15 (L. Lovasz, 1970). Let s, t ∈ N, then any graph G s.t. ∆(G) ⩽ s+ t− 1, can be split
into two graphs H1,H2 s.t. G = H1 ∪H2 and ∆(H1) ⩽ s, ∆(H2) ⩽ t.

11. Let Def(G) = v(G) − 2α ′(G).

Theorem 16 (C. Berge, 1958). For any graph G the following holds:

Def(G) = max
S⊆V(G)

(o(G− S) − |S|).

Connectivity

12. A block is any maximal connected subgraph of G that does not contain articulation points.

Lemma 6. Let B1 and B2 be two different blocks of the graph G, with V(B1) ∩ V(B2) ̸= ∅. Then
V(B1) ∩ V(B2) consists of an articulation point a of the graph G, where a is the only articulation
point separating B1 from B2.

Let B(G) be bipartite graph, where the vertices of one part are the articulation points a1, . . . ,an

of the graph G, and the vertices of the other part are its blocks B1, . . . ,Bm. The vertices ai and
Bj are adjacent if ai ∈ V(Bj). The graph B(G) is called the block and articulation point tree of
the graph G.

Lemma 7. Let B1 and B2 be two different blocks of the graph G, and let P be a path between them
in the graph B(G). Then the articulation points of the graph G that separate B1 from B2 are exactly
those articulation points that lie on the path P. Other articulation points do not even separate the
union of the blocks along the path P.

Theorem 17. a) The block and articulation point tree is indeed a tree, with all its leaves corre-
sponding to blocks.

b) An articulation point a separates two blocks B1 and B2 in the graph G if and only if a separates
B1 and B2 in B(G).

13. We call a block B extreme if it corresponds to a leaf of the block and articulation point tree. The
interior Int(B) of a block B is the set of all its vertices that are not articulation points in the
graph G.
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Theorem 18. Let B be an extreme block of a connected, but not biconnected graph G with v(G) ⩾ 2,
and let G ′ = G− Int(B). Then the graph G ′ is connected, and the blocks of G ′ are all the blocks of
G except for B.

Let U1, . . . ,Uk be all the connected components of the graph G− a, and let Gi = G(Ui ∪ {a}).
We decompose the graph G into the graphs G1, . . . ,Gk.

Lemma 8. Let b ∈ Ui. Then b separates the vertices x,y ∈ V(Gi) in Gi if and only if b separates
them in G. All the articulation points of the graphs G1, . . . ,Gk are exactly all the articulation points
of the graph G except a.

Algorithm 1. Algorithm for Constructing the Block and Articulation Point Tree.

14.

Theorem 19 (Menger, 1927, Goring 2000). Let X, Y ⊂ V(G), ∞ > κG(X, Y) ⩾ k, |X| ⩾ k, |Y| ⩾ k.
Then in the graph G, there exist k disjoint XY-paths.

Corollary 6. Let vertices x,y ∈ V(G) be non-adjacent,κG(x,y) ⩾ k. Then there exist k independent
paths from x to y.

Theorem 20 (Whitney, 1932). Let G be a k-connected graph. Then for any two vertices x,y ∈ V(G),
there exist k independent paths from x to y.

15.

Lemma 9. Let S ⊂ Rk(G),A ∈ Part(S). Then the following statements hold.

a) A vertex x ∈ Int(A) is not adjacent to any vertices in the set V(G) \A.

b) If Int(A) ̸= ∅, then Bound(A) separates Int(A) from V(G) \A.

Lemma 10. Let G be a k-connected graph, and let S,T ⊂ Rk(G).

a) Let A ∈ Part(S). Then Bound(A) is the set of all vertices in part A that are adjacent to at
least one vertex in V(G) \A.

b) Let A ∈ Part(S) and A ∈ Part(T). Then the boundary of A as part of Part(S) coincides with
the boundary of A as part of Part(T).

16.

Theorem 21. Let S1, . . . ,Sn ⊂ R(G), and let S =
⋃n

i=1 Si. Consider all sets of vertices of the
form

A =

n⋂
i=1

Ai, where Ai ∈ Part(Si). (1)

Then the following statements hold:

a) Any part A ∈ Part(S) can be represented in the form (1).

b) A ∈ Part(S) if and only if A is the maximal subset of vertices of the graph G representable in
the form (1).

c) If a set of vertices A can be represented in the form (1) and A /∈ Part(S), then A is a subset of
one of the sets in S.

Lemma 11. Let S,T ⊂ R(G), and let a part A ∈ Part(S) be such that none of the sets in T
separate it. Then A ∈ Part(S ∪ T).
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17.

Lemma 12. Let S, T ∈ Rk(G) and A ∈ Part(S) : T ∩ Int(A) = ∅. Then T does not separate part A
and, consequently, T does not separate set S.

Lemma 13. Let S, T ∈ Rk(G) be such that the set S does not separate T . Then T and S are
independent.

Lemma 14. Let S, T ∈ Rk(G) be independent, and A ∈ Part(S) contain T . Then in Part(T) there
∃!B ∈ Part(T) : B ⊃ Part(S) \A and Part(T) \ B ⊂ A.

18. Let the sets S, T ∈ Rk(G) be dependent, with Part(S) = {A1, . . . ,Am}, Part(T) = {B1, . . . ,Bn},
P = T ∩ S, Ti = T ∩ Int(Ai), Sj = S ∩ Int(Bj), and Gi,j = Ai ∩ Bj.

Lemma 15.

a) All sets T1, . . . , Tm; S1, . . . ,Sn are non-empty.

b) Part({S, T }) = {Gi,j}i∈[1..m],j∈[1..n], with Bound(Gi,j) = P ∪ Ti ∪ Sj.

Lemma 16.

a) Let i ̸= x, j ̸= y, |Bound(Gi,j)| ⩾ k and |Bound(Gx,y)| ⩾ k. Then |Bound(Gi,j)| =
|Bound(Gx,y)| = k, |Part(S)| = |Part(T)| = 2, |Ti| = |Sy|, and |Tx| = |Sj|.

b) If all parts of Part({S, T }) contain at least k vertices, then each boundary of each part of
Part({S, T }) has exactly k vertices, |Part(S)| = |Part(T)| = 2, and |T1| = |T2| = |S1| = |S2|.

19.

Lemma 17. Let H be a fragment of the graph G, T ∈ Rk(G), with T ∩H ̸= ∅, and T is independent
with Bound(H). Then T ̸⊇ H and exists a fragment H ′ ⊆ H : Bound(H ′) = T .

Definition 1. A k-connected graph G is called inseparable if there does not exist a set S ∈ Rk(G)
and a fragment H such that H ⊂ S.

Lemma 18. Let G be a k-connected graph with δ(G) ⩾ 3k−1
2 . Then G is inseparable.

20.

Lemma 19. Let G be an inseparable k-connected graph, and let S, T ∈ Rk(G) be dependent. Then
each of these sets divides the graph into two parts, and they can be numbered such that

Part(S) = {A1,A2}, Part(T) = {B1,B2}

and |Bound(G1,2)| = |Bound(G2,1)| = k. In this numbering, we have |T1| = |S1| and |T2| = |S2|.

Theorem 22 (D. V. Karpov, A. V. Pastor, 2000). Let G be an inseparable k-connected graph, and
let H be a minimal fragment of G by inclusion. Then for any vertex x ∈ H, the graph G− x remains
k-connected.

Corollary 7 (G. Chartrand, A. Kaugars, D. R. Lick, 1972). Let G be a k-connected graph with
δ(G) ⩾ 3k−1

2 . Then there exists a vertex x ∈ V(G) such that the graph G− x remains k-connected.
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Spanning Trees

21. Denote by st(G) the number of spanning trees of a connected graph G.

Theorem 23 (A. Cayley, 1889). Let G be a graph where loops and multiple edges are allowed, and
let e ∈ E(G) be an edge that is not a loop. Then

st(G) = st(G− e) + st(G ∗ e).

Theorem 24 (C. Cayley, 1889). st(Kn) = nn−2.

22.

Theorem 25 (S. Schuster, 1983). Let a connected graph G have spanning trees with m and n

leaves, where m < n. Then, for any natural number k ∈ [m,n], there exists a spanning tree of G
with exactly k leaves.

23.

Theorem 26 (D. J. Kleitman, D. B. West, 1991). In a connected graph G with δ(G) ⩾ 3, there exists
a spanning tree with at least v(G)

4 + 2 leaves.

Coloring

24.

Lemma 20. Let G be a connected graph, ∆(G) ⩽ d, and suppose that at least one vertex of G has
degree less than d. Then χ(G) ⩽ d.

Lemma 21. If G is a biconnected but not complete graph with δ(G) ⩾ 3, then there exist vertices
a,b, c ∈ V(G) such that ab,bc ∈ E(G), ac /∈ E(G), and the graph G− a− c is connected.

Theorem 27 (R. L. Brooks, 1941). Let d ⩾ 3, and let G be a connected graph, distinct from Kd+1,
with ∆(G) ⩽ d. Then χ(G) ⩽ d.

25.

Definition 2. Choice number ch(G) is the smallest k ∈ N. Such that if one assigns list of k colors
to each vertex, then there is a proper coloring, such that color of each vertex belongs to the list of
that vertex.

Example 2. Prove that there is a graph G : ch(G) > χ(G).

Definition 3. A graph G is called d-choosable if for any set of lists L satisfying the condition
ℓ(v) ⩾ dG(v) for each vertex v ∈ V(G), there exists a proper coloring of the vertices of G using colors
from the lists.

Definition 4. A vertex v ∈ V(G) is called normal if ℓ(v) = dG(v), and excessive if ℓ(v) > dG(v).

Lemma 22. Let G be a connected graph, and let L be a d-list in which a vertex a is excessive. Then
there exists a proper coloring of the vertices of G in accordance with the list L.

Lemma 23. Let G be a connected graph, and let L be a d-list. Suppose that there exist two adjacent
vertices a and b such that the graph G−a is connected and L(a) ̸⊆ L(b). Then there exists a proper
coloring of the vertices of G in accordance with the list L.

26.
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Definition 5. A connected graph in which every block is either an odd cycle or a complete graph is
called a Gallai tree.

Theorem 28 (O. V. Borodin, 1977). If a connected graphG is not a Gallai tree, thenG isd-choosable.

Theorem 29 (V. G. Vizing, 1976). Let d ⩾ 3, and let G be a connected graph, distinct from Kd+1,
with ∆(G) ⩽ d. Then ch(G) ⩽ d.

27.

Definition 6. A graph G is called k-critical if χ(G) = k, but χ(H) < k for every subgraph H of G.

Lemma 24. If G is a k-critical graph, then δ(G) ⩾ k− 1.

Lemma 25. Let G be a k-critical graph, and let S ⊂ V(G) be a separating set with |S| < k. Then
the graph G[S] is not complete.

Theorem 30 (T. Gallai, 1963). Let k ⩾ 3, and let G be a k-critical graph. Let Vk−1 be the set of all
vertices of G with degree k− 1, and let Gk−1 = G[Vk−1]. Then Gk−1 is a Gallai forest.

28.

Lemma 26. Let G be a non-empty graph, and let e = uv be one of its edges. Then:

χG−e(k) = χG(k) + χG·uv(k),

where G · uv denotes the graph obtained by contracting the edge uv.

Theorem 31. For any loopless graph G, the following statements hold:

a) The function χG(k) ∈ Z[k] is a monic polynomial with integer coefficients of degree |V(G)|.

b) The signs of the coefficients of χG(k) alternate (i.e., the leading coefficient is non-negative, the
next coefficient is non-positive, then non-negative again, and so on).

29.

Lemma 27. Let G1, . . . ,Gn be the components of a graph G. Then: χG(k) =
∏n

i=1 χGi
(k).

Theorem 32. For any graph G, the number 0 is a root of χG(k) with multiplicity equal to the number
of connected components of G.

30.

Lemma 28. Let G be a connected graph with n blocks B1, . . . ,Bn. Then:

χG(k) =

(
1
k

)n−1

·
n∏

i=1

χBi
(k).

Theorem 33 (E. G. Whitehead, L.-C. Zhao, 1984). Let G be a connected graph with more than one
vertex. Then the number 1 is a root of the polynomial χG(k) with multiplicity equal to the number of
blocks of the graph G.
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Planar Graphs

31.

Theorem 34 (C. Jordan, 1887.). A closed, non-self-intersecting polygonal line P divides the points
of the plane not lying on P into two parts such that the following conditions are satisfied:

(1) Any two points from the same part can be connected by a polygonal line that does not intersect P;

(2) Any polygonal line connecting two points from different parts intersects P.

Proof can be omitted.

Define planar graph, plane graph, face, boundary of a face, walk of a boundary, B(d),Z(d).

Lemma 29. A graph is planar if and only if it can be drawn on the sphere without edge crossings in
its interior.

Lemma 30. ∑
d∈F(G)

b(d) = 2e(G).

Lemma 31. (a) Any two points on the boundary of a face d can be connected by a polygonal line
lying entirely within d.

(b) If two points A and B in the drawing of a graph G can be connected by a polygonal line L that
does not intersect the drawing of G, then A and B lie on the boundary of some face.

Lemma 32. Let ab1 and ab2 be two adjacent edges at vertex a. Then the edges ab1 and ab2 lie on
the boundary of some face.

32.

Lemma 33. For a plane graph G, the following statements hold:

(a) If d ∈ F(G) and B(d) is disconnected, then the different connected components of the graph
B(d) lie in different connected components of the graph G.

(b) The graph G is disconnected if and only if it has a face with a disconnected boundary.

Lemma 34. (a) The internal edges of the faces of a plane graph G are precisely all the bridges of
the graph G.

(b) Let d be a face of an edge-2-connected graph G. Then B(d) is a cycle (not necessarily simple).

Lemma 35. If two distinct faces f and f ′ of a plane graph G have identical boundaries, then G is a
simple cycle.

33.

Lemma 36. Let G be a plane graph.

(a) If a face d and its boundary vertex a are such that B1 and B2 are different components of the
graph B(d) − a, then B1 and B2 lie in different components of the graph G− a. In particular,
a is an articulation point of the graph G.

(b) A graph G without self-loops is vertex-2-connected if and only if the boundaries of its faces are
simple cycles.

Definition 7. • A cycle C of a graph G is non-separating if the graph G− V(C) is connected.

• A cycle C is induced if it has no chords (i.e., it is an induced subgraph on its vertex set).
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Lemma 37. Let G be a 3-connected plane graph. Then the set of boundaries of its faces is exactly
the set of its non-separating induced cycles.

Definition 8. Let G and G ′ be two plane graphs, and let φ : V(G) → V(G ′) be a bijection satisfying
the following conditions:

(a) xy ∈ E(G) ⇐⇒ φ(x)φ(y) ∈ E(G ′);

(b) U ⊆ V(G) is the set of boundary vertices of some face of G if and only if φ(U) = {φ(x) : x ∈ U}

is the set of boundary vertices of some face of G ′.

Then φ is called an isomorphism of plane graphs G and G ′, and the plane graphs themselves are
called isomorphic.

Theorem 35 (H. Whitney, 1933). Any two plane drawings of a 3-connected graph G are isomorphic
as plane graphs.

34.

Theorem 36 (L. Euler, 1752). Let G be a plane graph with v vertices, e edges, and f faces, having k

connected components. Then
v− e+ f = 1 + k.

No proof is needed.

Corollary 8. Let G be a planar graph without loops or multiple edges, and v ⩾ 3. Then the following
statements hold:

(a) e ⩽ 3v− 6.

(b) If G is bipartite, then e ⩽ 2v− 4.

Corollary 9. If G is a planar graph without loops or multiple edges, then δ(G) ⩽ 5.

Corollary 10. The graphs K5 and K3,3 are non-planar.

Lemma 38. Let x,y ∈ V(G), xy ∈ E(G). Then the following assertions hold:

1) If G · xy ⊇ K3,3, then G ⊇ K3,3.

2) If G · xy ⊇ K5, then G ⊇ K5 or G ⊇ K3,3.

35.

Theorem 37 (K. Kuratowski, 1930). A graph G (possibly with multiple edges and loops) is non-
planar if and only if G contains a subgraph that is a subdivision of K5 or K3,3.

Constructible Graphs

36.

Definition 9 (Hajós construction, 1961). Let q ∈ N. The class of q-constructible graphs Cq

consists of graphs that can be obtained from Kq by any sequence of the following two operations:

• If G ∈ Cq, x,y ∈ V(G), xy /∈ E(G), then G#xy ∈ Cq.

• Let G1,G2 ∈ Cq, V(G1) ∩ V(G2) = {x}, xy1 ∈ E(G1), xy2 ∈ E(G2). Then

(G1 − xy1) ∪ (G2 − xy2) + y1y2 ∈ Cq.
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Base: Kq ∈ Cq.

Lemma 39 (Hajós, 1961). Let q ∈ N and a graph G contains subgraph from Cq, then χ(G) ⩾ q.

37.

Definition 10 (Ore, 1967). (a) Define the operation of graph merging. Let G1,G2 be graphs
with V(G1) ∩ V(G2) = ∅, and let W1 ⊂ V(G1), W2 ⊂ V(G2) be such that |W1| = |W2| and
µ : W1 → W2 is a bijection. Suppose x1y1 ∈ E(G1), x2y2 ∈ E(G2), where x1 ∈ W1, µ(x1) = x2,
and µ(y1) ̸= y2 (possibly, y1 /∈ W1).
The merging of graphs G1 and G2 is the graph G1#µ,x1y1,x2y2G2, obtained from

(G1 − x1y1) ∪ (G2 − x2y2) + y1y2

by merging the pairs of vertices v,µ(v) for all v ∈ W1.
(b) Let q ∈ N. Define C ′

q as the class of all graphs that can be obtained from Kq by any sequence
of graph merging operations.

Lemma 40 (Ore, 1967). For any q ⩾ 3, C ′
q ⊂ Cq.

Lemma 41 (A. Urquhart, 1997.). Let q ∈ N. Then any graph G with χ(G) ⩾ q can be obtained
using graph merging operations from graphs containing cliques of size at least q.

Hypergraph Coloring

38.

Definition of a hypergraph.

Definition 11. A coloring of the vertices of a hypergraph H is called proper if every hyperedge
contains at least two vertices of different colors.

Definition 12. An image of a hypergraph H is any graph G (possibly with multiple edges) such
that V(G) = V(H) and there exists a bijection φ : E(G) → E(H) such that e ⊆ φ(e) for every edge
e ∈ E(G). We call φ the bijection of the image G.

Definition 13. Let r ⩾ 3, and let G be an image of the hypergraph H. Consider a sequence of
vertices a0b0a1b1 . . .an of the hypergraph H satisfying the following conditions:

(1) For each i ∈ [0,n− 1], the vertices ai, bi, and ai+1 are distinct, and there exists a hyperedge
ei ∈ E(H) such that ai,bi,ai+1 ∈ ei.

(2) All hyperedges e0, . . . , en−1 are distinct, and a0b0, . . . ,an−1bn−1 ∈ E(G), with φ(aibi) = ei.

Then a0b0a1b1 . . .an is called an alternating chain from a0 to an. The number n is called the
length of this alternating chain. We say that the alternating chain passes through the vertices
a0,b0, . . . ,an and the edges a0b0, . . . ,an−1bn−1.

Lemma 42. Let H be a hypergraph, where every hyperedge contains at least r vertices, with
∆(H) = ∆ and k =

⌈2∆
r

⌉
. Then there exists an image G of the hypergraph H such that ∆(G) ⩽ k.

39.

Theorem 38 (H.V. Gravin, D.V. Karpov, 2011). Let H be a hypergraph where each hyperedge
contains at least r vertices, ∆(H) = ∆, and k =

⌈2∆
r

⌉
.

(a) The vertices of H can be properly colored with k+ 1 colors.
(b) If r ⩾ 3 and k ⩾ 3, then the vertices of H can be properly colored with k colors.
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