Advanced Graph Theory, Homework 2: Common Problems

- 1. Given bipartite graph G with n vertices in each part, such that $\delta(G) \geq \frac{n}{2}$, prove that there is a perfect matching in G.
- 2. Prove that every graph with average degree at least 2k has an induced subgraph with minimum degree at least k+1.
- 3. Prove that each graph G such that $\Delta(G) = k$ can be supplemented to a graph H, such that $V(G) \subseteq V(H)$, $E(G) \subseteq E(H)$, and $\delta(H) = \Delta(H) = k$.
- 4. Sequence d_1, \ldots, d_n is graphical if there is a graph G with such degree sequence. Prove that sequence $(s, t_1, \ldots, t_s, d_1, \ldots, d_n)$ (ordered descending) is graphical iff $(t_1 1, \ldots, t_s 1, d_1, \ldots, d_n)$ is graphical.
- 5. Let $n \geq 5$. The edges of the complete graph K_n are colored black and white.
 - (a) Prove that the vertices of K_n can be divided into two groups V_1 and V_2 such that there exists a Hamiltonian path in $G(V_1)$ consisting of white edges, and a Hamiltonian path in $G(V_2)$ consisting of black edges.
 - (b) Suppose n is odd. Prove that the vertices of K_n can be divided into two groups V_1 and V_2 such that there exists a Hamiltonian path in $G(V_1)$ consisting of white edges, and a Hamiltonian cycle in $G(V_2)$ consisting of black edges. It is allowed for one of the groups to contain exactly one vertex.
 - (c) For which even $n \geq 5$ is the statement of part (b) true?