Advanced Graph Theory, Homework 3: Basics of Connectivity

For a connected graph G, we say that diameter $\operatorname{diam}(G) = \max_{u,v \in V(G)} d(u,v)$, where d(u,v) is the distance between u and v in G.

- 1. Prove that if $diam(G) \geq 4$, then $diam(\overline{G}) \leq 2$.
- 2. Prove that any tree T has at most one perfect matching. Also prove that a tree T has a perfect matching iff o(T-v)=1 for any $v\in V(T)$.
- 3. Let G = (U, V) be a connected bipartite graph, prove that if in U all degrees are different, then there is a perfect matching in G.
- 4. Let G = (U, V) be a bipartite graph and let $A \subseteq U, B \subseteq V$ be some sets of vertices. Assume there is M matching covering A and M' matching covering B, prove that there is a matching which covers $A \cup B$.
- 5. Is any tree of blocks and articulation points a tree of some graph?
- 6. A connected graph has an Eulerian cycle. Prove that each of its blocks also has an Eulerian cycle.
- 7. A connected graph G is called a *cactus* if every edge of G belongs to exactly one simple cycle.
 - (a) Prove that all blocks of a cactus are simple cycles.
 - (b) Prove that if all cycles in a graph without bridges are odd, then this graph is a cactus.
 - (c) What is the maximum number of edges that a graph with all cycles odd can have (express your answer in terms of the number of vertices)?
- 8. Let G be a 2-connected graph with n vertices, and let $v_1, v_2 \in V(G)$ be two vertices. Let n_1 and n_2 be natural numbers such that $n_1 + n_2 = n$. Then the vertex set of graph G can be partitioned into two connected subsets $V_1 \ni v_1$ and $V_2 \ni v_2$ such that $|V_1| = n_1$ and $|V_2| = n_2$. (A vertex set is called connected if the induced subgraph on it is connected.)