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Theorem (L. Euler, 1752)
Let G be a plane graph with v vertices, e edges, and f faces, having k connected
components. Then

v − e+ f = 1 + k.

Corollary
Let G be a planar graph without loops or multiple edges, and v ≥ 3. Then the following
statements hold:

1 e ≤ 3v − 6.
2 If G is bipartite, then e ≤ 2v − 4.

Corollary
If G is a planar graph without loops or multiple edges, then δ(G) ≤ 5.

Corollary
The graphs K5 and K3,3 are non-planar.

3 / 23



Definition
A graph H ′ is called a subdivision of a graph H if H ′ can be obtained from H by
replacing some edges with simple paths (each replaced edge xy is replaced by a simple
xy-path). All added vertices are distinct and have degree 2.
Vertices of H ′ corresponding to the vertices of H are called principal vertices.

The notation G ⊃ H means that G contains a subgraph that is a subdivision of H.

Corollary
1 A subdivision of a graph H is planar if and only if H is planar.
2 Any subdivision of K5 or K3,3 is non-planar.
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Formulate in terms of paths, what does it mean that G ⊃ K5?
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Lemma
Let x, y ∈ V (G), xy ∈ E(G). Then the following assertions hold:
1) If G · xy ⊇ K3,3, then G ⊇ K3,3.
2) If G · xy ⊇ K5, then G ⊇ K5 or G ⊇ K3,3.

Proof. Let w = x · y, and let H be the subgraph G · xy, which is a subdivision of K3,3 or
K5.

If w /∈ V (H), then clearly G ⊇ K3,3 or G ⊇ K5, respectively.
Next, suppose w ∈ V (H). Construct a subgraph H ′ of G as follows:

V (H ′) = V (H) \ {w} ∪ {x, y}.
Include in E(H ′) all edges of E(H) not incident to w. For every edge aw ∈ E(H),
include in E(H ′) one of the edges ax or ay (if both exist in G, choose any one of
them). Finally, include the edge xy in E(H ′).
Denote the edges of H ′ \ xy incident to x as red, and the edges of H ′ \ xy incident to y
as blue. Together, the red and blue edges equal dH(w).
If H ′ contains no blue edges, then H ′ − y is a subgraph of G isomorphic to H. The
same applies to the red edges. In this case, the proof of the lemma is complete. 5 / 23



Continuation of the Proof of Lemma 8

Suppose ay is the only blue edge in H ′. Then the edge aw ∈ E(H) corresponds to the
path ayx in H ′, i.e., H ′ is a subdivision of H (Picture!).

In this case, the lemma is
proven, and the argument is analogous for the case where there is exactly one red edge.
Now suppose there are at least two red edges and two blue edges. Then dH(w) ≥ 4,
from which it immediately follows that H ⊇ K5 and dH(w) = 4.
Let z1, z2, z3, z4 be the four remaining primary vertices of the graph H. Each pair of
vertices w, z1, z2, z3, z4 is connected in H by a path—a subdivision of the corresponding
edge of K5. These paths have no common internal vertices. These paths correspond to
paths in H ′.
In H ′, there exist the paths xz1, xz2, yz3, and yz4 (Picture!). Thus, H ′ ⊇ K3,3: each
vertex of x, z3, z4 is connected by a path to each vertex of y, z1, z2, and these paths
have no common internal vertices.

□
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Theorem (K. Kuratowski, 1930)
A graph G (possibly with multiple edges and loops) is non-planar if and only if G
contains a subgraph that is a subdivision of K5 or K3,3.

Proof. ⇐ (why?)

Trivially
⇒ Assume the contrary and consider a minimal counterexample G (a non-planar graph
that does not contain subdivisions of K5 or K3,3). Any graph that does not contain
subdivisions of K5 or K3,3 and has fewer vertices than G, or the same number of vertices
but fewer edges, must necessarily be planar.

Statement 1
The graph G does not have loops or multiple edges.

Proof.
Let e be a loop in G. Then G is planar, and from its planarity it follows that the
graph G− e is also planar (a loop can always be redrawn in a planar embedding of
G− e). Same for multiple edges.
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Statement 2
The graph G is 3-connected.

Proof.
If G is disconnected, then?

then its components do not contain subdivisions of K5 and
K3,3, and therefore, are planar. This implies G is planar, which is a contradiction.
Suppose G has a cut-vertex a. Then G = G1 ∪G2, where V (G1) ∩ V (G2) = {a}.
The graphs G1 and G2 do not contain subdivisions of K5 or K3,3, and thus, are planar.
This implies that G is planar as well (it is possible to embed G1 and G2 such that a
lies on the boundary of the outer face in both embeddings, and then glue them
together). Contradiction.
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Continuation of Statement 2

Finally, suppose G is 2-connected but has a separating set S = {a, b}. Then
G = G1 ∪G2, where V (G1) ∩ V (G2) = S. then?

Let G′
i = Gi + ab.

Assume G′
1 contains a subgraph H that is a subdivision of K5 or K3,3. Since H

cannot be a subgraph of G, the edge ab ∈ E(H) \ E(G).
However, G contains an ab-path P passing through the vertices of G2. Replacing the
edge ab in H with the path P , we obtain a subdivision H ′ of the graph H, which is a
subgraph of G. Thus, G contains a subdivision of K5 or K3,3, which is a contradiction.
Therefore, G′

1 does not contain subdivisions of K5 or K3,3, and thus, G′
1 is planar.

Similarly, G′
2 is planar.

Hence, it is possible to embed these graphs in the plane such that the edge ab lies on
the boundary of the outer face in both embeddings, and then glue these embeddings
together. Contradiction.

□
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Proof of the Theorem (Continuation)
Clearly, G ̸= K4. Then, there exists an edge xy ∈ E(G) such that the graph G · xy is
3-connected. Let w = x · y.
Then, we have G · xy ̸⊇ K5, and G · xy ̸⊇ K3,3, so the graph G · xy is planar.
Let G′ = G · xy − w ∼= G− x− y.
Consider a planar embedding of the graph G′, obtained from the embedding of G · xy
by removing the vertex w. Let q be the face of G′ on which the vertex w is located.
The graph G′ is 2-connected, so the boundary of the face q is a simple cycle Z.
Mark the vertices of Z adjacent to y (denote their set as A) and number them
cyclically as a1, a2, . . . , an. From the 3-connectedness of G, it follows that n ≥ 2. Let
B be the set of vertices of the cycle Z adjacent to x.
If A = B and n ≥ 3 (since the graph G−A is disconnected in this case), then?

then G
contains a subdivision of K5 with primary vertices x, y, a1, a2, . . . , an, which is a
contradiction.
Next, assume B ⊊ A. Let b ∈ B \A lie on the arc L = a1Za2, which contains no other
vertices from A.
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Proof of the Theorem (Continuation) II

Suppose that there is a vertex b′ ∈ B that does not lie on the arc L (possibly coinciding
with one of the vertices in A), but b′ /∈ {a1, a2}.
Then the cyclic order of the vertices a1, b, a2, b

′ on Z is as shown. then?

Therefore, G
contains a subdivision of K3,3 with main vertices x, a1, a2 (one partition) and y, b, b′

(second partition), leading to a contradiction (see Fig. a).
The remaining case is when all vertices of the set B lie on the arc L (possibly
coinciding with a1 or a2).
In this case, consider the original planar embedding of the graph G · xy and remove all
edges from w to the vertices in B \A.
The edges from A to w divide the face q into n regions, one of which is the face d,
bounded by L and the edges wa1, wa2.
We can place the vertex x inside d and connect it with edges to w and the vertices
from B, without violating planarity. To construct a planar embedding of G, it
remains to rename w as y.

□
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Definition
1) A face is called a triangle if its boundary contains exactly three vertices.
2) A planar graph without loops is called a triangulation if every face is a triangle.

Multiple edges are allowed.
3) Triangulating a planar graph means adding additional edges to it to achieve a

triangulation.
Draw a triangulation of some graph with multiple edges

Corollary
A triangulation is a 2-connected graph.
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Lemma
Let G be a planar graph without loops, v(G) ≥ 3 and |Vd| ≥ 3 for any face d. Then G
can be triangulated without introducing new pairs of multiple edges.

Proof:
Let G not be a triangulation. Then G has a face d that is not a triangle. Let
H = G[Vd].
Any two vertices in Vd can be connected by a polygon line in d that does not intersect
the edges of the graph G.
Thus, if the graph H is incomplete, we can add an edge without introducing new pairs
of multiple edges.
end of the proof?

Let H = Km. Since |Vd| ≥ 3 and the graph H is planar, m ∈ {3, 4}.
Since B(d) is not a triangle, it is a cycle of length 4. Then two diagonals of this cycle
must lie outside the boundary of f , which is clearly impossible: such diagonals would
intersect each other.
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Statement
Triangulation is a maximal planar graph.

Proof.
Let 2n be the number of faces in some triangulation T . Then, T has 3n edges. From
Euler’s formula we know that v(T ) = 1 + e(T )− f(T ) = n+ 2. Hence,
e(T ) = 3v(T )− 6.
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Lemma
In any triangulation T ⊆ G, v(T ) ≥ 4, there exists an edge e belonging to exactly two
triangles — the two faces sharing e.

take any edge?

Proof:
We call a separating triangle — one that has vertices on both sides of the plane.
If T has no separating triangles, the statement is obvious — any edge will suffice.
Suppose there are separating triangles. Consider a separating triangle abc such that
no other separating triangles are contained within it.
However, there are vertices inside abc, which implies the presence of some edge e.
Then e cannot belong to the separating triangle, as such a triangle would have to be
contained within abc, contradicting the choice of abc.
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Theorem (K. Wagner, 1936)
Let G be a planar graph without multiple edges. Then there exists a planar drawing of
G in which all edges are straight-line segments.

Proof:
We will prove the statement by induction on the number of vertices in the graph. The
base case, for a graph with ≤ 3 vertices, is obvious.
It is sufficient to prove the theorem for the case where G is a triangulation, any graph
can be triangulated without introducing multiple edges. If we straighten the
triangulation, the original graph will also be straightened.
Take an edge e = uv ∈ E(G) such that it belongs to exactly two triangles — the faces
xuv and yuv.
Let G′ = G · uv be the triangulation obtained by "contracting" the faces xuv and yuv,
while keeping the other faces of G unchanged. There are no multiple edges in G′.
By the induction hypothesis, there exists a planar drawing of G′ in which all edges are
straight-line segments. We now consider this drawing further.
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Continuation of the Proof:
Order the vertices in NG(u) in the clockwise order of edges leaving u:
x, v, y, a1, . . . , ak. Since G is a triangulation, any two consecutive vertices in this
order, together with u, form a triangular face.
Similarly, order the vertices in NG(v) in the clockwise order of edges leaving v:
y, u, x, b1, . . . , bm. Since G is a triangulation, any two consecutive vertices in this
order, together with v, form a triangular face.
Then, in the graph G′, the vertices in NG′(w) (the neighbors of w after the
contraction of uv) will be ordered clockwise in the following sequence:
y, a1, . . . , ak, x, b1, . . . , bm. Any two consecutive vertices (with respect to the edges
leaving w) together with w will form a triangular face.
Draw G from G′ by turning w into u, v.
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It is clear that a triangulation is not a bipartite graph. What can we say about the
possibility of coloring the vertices of a triangulation with three colors?
It is easy to see that a triangulation with such a coloring cannot have vertices of odd
degree. (why?)

But can we color the vertices of a triangulation in three colors if all its
vertices have even degree?

Theorem (L. I. Golovina, I. M. Yaglom, 1961)
Let T be a planar triangulation. Then χ(T ) = 3 if and only if all vertices of T have
even degrees.
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Theorem (L. I. Golovina, I. M. Yaglom, 1961)
Let T be a planar triangulation. Then χ(T ) = 3 if and only if all vertices of T have
even degrees.

Proof
For any vertex a ∈ T , the graph T (NT (a)) (the subgraph induced by neighbors of a)
contains a cycle of length dT (a) (since the endpoints of the edges leaving a are distinct
and adjacent in the planar embedding). Denote this cycle as ZT,a.

⇒ The necessity of the condition is obvious. Indeed, suppose a vertex a has an odd
degree. Then the cycle ZT,a is odd, and a proper 3-coloring must use all three colors.
However, in this case, it is impossible to color vertex a.

⇐ Suppose all vertices of T have even degrees. We will prove the existence of a proper
3-coloring of T by induction on v(T ). The base case for v(T ) = 3 is obvious.

Inductive Step:
Suppose v(T ) > 3, and let a ∈ V (T ) be a vertex of minimum degree. By one of the
previous Corollaries, dT (a) ≤ 5. Since this degree is even, dT (a) ∈ {2, 4}.
Case dT (a) = 2 is straightforward: NT (a) = {b1, b2}, and b1, b2 are connected by two
multiple edges e and e′. 21 / 23



It is easy to see that T ′ = T − a− e′ is smaller than T and is a triangulation whose
vertices all have even degrees. Thus, χ(T ′) = 3 by the induction hypothesis, and a can
be easily recolored to complete the coloring of T .
Let dT (a) = 4, and NT (a) = {b1, b2, b3, b4}, where these vertices are listed in the order
of traversal around the cycle Z = ZT,a.
Then the boundary of one of the faces of the graph H = T − a is the cycle Z (assume
this face is internal), and the boundaries of all other faces are triangles.
Define a pair of vertices bi, bi+2 as good if bi ̸= bi+2 and bibi+2 /∈ E(T ); otherwise, the
pair is bad.
If the pair b1, b3 is bad, then either b1 = b3 or the edge b1b3 lies in the external region
of the cycle Z. Clearly, in this case, the pair b2, b4 is good.
Now assume the pair b2, b4 is good. Then the graph T ′ = H#b2b4 is a triangulation
smaller than T , where b = b2#b4.
The degrees of the vertices in the triangulation T ′ remain even:

dT ′(b1) = dT (b1)− 2,

dT ′(b3) = dT (b3)− 2,

dT ′(b) = dT (b2) + dT (b4)− 4.
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By the induction hypothesis, the triangulation T ′ admits a proper 3-coloring ρ′ with
ρ′(b) = 1.
Construct a proper 3-coloring ρ of the vertices of T . For all vertices
v ∈ V (T ) \ {a, b2, b4}, set ρ(v) = ρ′(v). Let ρ(b2) = ρ(b4) = ρ′(b).
Suppose ZT,b2 = ab1x1 . . . xtb3 and ZT,b4 = ab3y1 . . . ysb1. Clearly, both s and t are
odd.
Then the cycle Z ′ = ZT,b = b1x1 . . . xtb3y1 . . . ysb1 is colored in ρ′ using colors 2 and 3.
Therefore, the vertices b1 and b3, which are at even distances from each other, must
have the same color. Thus, ρ′(b1) = ρ′(b3) = 2.
Consequently, the vertices of the cycle ZT,a are colored in ρ with colors 1 and 2.
Assigning ρ(a) = 3 completes the proper 3-coloring of the triangulation T .
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