Lecture 12, Constructible Graphs, Hypergraph Coloring 13.01.2025 ## Content Constructible Graphs 2 Hypergraphs ### Definition (Hajós construction, 1961) Let $q \in \mathbb{N}$. The class of q-constructible graphs C_q consists of graphs that can be obtained from K_q by any sequence of the following two operations: - If $G \in \mathcal{C}_q$, $x, y \in V(G)$, $xy \notin E(G)$, then $G \# xy \in \mathcal{C}_q$. - Let $G_1, G_2 \in \mathcal{C}_q, V(G_1) \cap V(G_2) = \{x\}, xy_1 \in E(G_1), xy_2 \in E(G_2)$. Then $$(G_1 - xy_1) \cup (G_2 - xy_2) + y_1y_2 \in \mathcal{C}_q.$$ Base: $K_q \in \mathcal{C}_q$. ### Definition (Hajós construction, 1961) Let $q \in \mathbb{N}$. The class of q-constructible graphs C_q consists of graphs that can be obtained from K_q by any sequence of the following two operations: - If $G \in \mathcal{C}_q$, $x, y \in V(G)$, $xy \notin E(G)$, then $G \# xy \in \mathcal{C}_q$. - Let $G_1, G_2 \in \mathcal{C}_q, V(G_1) \cap V(G_2) = \{x\}, xy_1 \in E(G_1), xy_2 \in E(G_2)$. Then $$(G_1 - xy_1) \cup (G_2 - xy_2) + y_1y_2 \in \mathcal{C}_q.$$ Base: $K_q \in \mathcal{C}_q$. ### Lemma (Hajós, 1961) Let $q \in \mathbb{N}$ and a graph G contains subgraph from C_q , then $\chi(G) \geq q$. ### Proof. On the whiteboard. ### Definition (Ore, 1967) • Define the operation of graph merging. Let G_1, G_2 be graphs with $V(G_1) \cap V(G_2) = \emptyset$, and let $W_1 \subset V(G_1)$, $W_2 \subset V(G_2)$ be such that $|W_1| = |W_2|$ and $\mu: W_1 \to W_2$ is a bijection. Suppose $x_1y_1 \in E(G_1)$, $x_2y_2 \in E(G_2)$, where $x_1 \in W_1$, $\mu(x_1) = x_2$, and $\mu(y_1) \neq y_2$ (possibly, $y_1 \notin W_1$). The merging of graphs G_1 and G_2 is the graph $G_1 \#_{\mu,x_1y_1,x_2y_2}G_2$, obtained from $$(G_1 - x_1y_1) \cup (G_2 - x_2y_2) + y_1y_2$$ by merging the pairs of vertices $v, \mu(v)$ for all $v \in W_1$. ② Let $q \in \mathbb{N}$. Define \mathcal{C}'_q as the class of all graphs that can be obtained from K_q by any sequence of graph merging operations. ### Lemma (Ore, 1967) For any $q \geq 3$, $C'_q \subset C_q$. ### Lemma (A. Urquhart, 1997.) Let $q \in \mathbb{N}$. Then any graph G with $\chi(G) \geq q$ can be obtained using graph merging operations from graphs containing cliques of size at least q. ## Content 1 Constructible Graphs 2 Hypergraphs What is a proper coloring of a hypergraph? ### Definition A coloring of the vertices of a hypergraph \mathcal{H} is called *proper* if every hyperedge contains at least two vertices of different colors. ### Definition A coloring of the vertices of a hypergraph \mathcal{H} is called *proper* if every hyperedge contains at least two vertices of different colors. #### Definition An *image* of a hypergraph \mathcal{H} is any graph G (possibly with multiple edges) such that $V(G) = V(\mathcal{H})$ and there exists a bijection $\varphi : E(G) \to E(\mathcal{H})$ such that $e \subseteq \varphi(e)$ for every edge $e \in E(G)$. We call φ the bijection of the image G. - Multiple edges of the graph-image G, corresponding to different hyperedges of the hypergraph \mathcal{H} , are considered distinct. - What is the connection between proper colorings of hypergraph and images? From now on, every hyperedge \mathcal{H} contains at least r vertices. ### Definition Let $r \geq 3$, and let G be an image of the hypergraph \mathcal{H} . Consider a sequence of vertices $a_0b_0a_1b_1 \dots a_n$ of the hypergraph \mathcal{H} satisfying the following conditions: - (1) For each $i \in [0, n-1]$, the vertices a_i , b_i , and a_{i+1} are distinct, and there exists a hyperedge $e_i \in E(\mathcal{H})$ such that $a_i, b_i, a_{i+1} \in e_i$. - (2) All hyperedges e_0, \ldots, e_{n-1} are distinct, and $a_0b_0, \ldots, a_{n-1}b_{n-1} \in E(G)$, with $\varphi(a_ib_i) = e_i$. Then $a_0b_0a_1b_1...a_n$ is called an *alternating chain* from a_0 to a_n . The number n is called the *length* of this alternating chain. We say that the alternating chain passes through the vertices $a_0, b_0, ..., a_n$ and the edges $a_0b_0, ..., a_{n-1}b_{n-1}$. #### Picture! - We allow the case n = 0 in the definition of an alternating chain. Thus, the vertex a_0 is considered an alternating chain from a_0 to a_0 of length 0. - Since φ is a bijection, all edges $a_0b_0, \ldots, a_{n-1}b_{n-1}$ in the definition of the alternating chain are distinct. Recall that multiple edges of the graph G, corresponding to different hyperedges of the hypergraph \mathcal{H} , are considered distinct. - The vertices in the definition of an alternating chain are not required to be distinct. It is possible for an alternating chain to pass through some vertices more than once. #### Lemma Let \mathcal{H} be a hypergraph, where every hyperedge contains at least r vertices, with $\Delta(\mathcal{H}) = \Delta$ and $k = \left\lceil \frac{2\Delta}{r} \right\rceil$. Then there exists an image G of the hypergraph \mathcal{H} such that $\Delta(G) \leq k$. #### Proof. - For r = 2, for any image G of the hypergraph \mathcal{H} , we have $\Delta(G) \leq \Delta = k$. From now on, assume $r \geq 3$. - For the graph G, let $V_{k+1}(G)$ denote the set of all vertices in G with degree at least k+1, and let $s_{k+1}(G)$ denote the sum of the degrees of the vertices in $V_{k+1}(G)$ in the graph G. - Assume, for the sake of contradiction, that the lemma is false. In this case, for any image G, we have $V_{k+1}(G) \neq \emptyset$ and $s_{k+1}(G) > 0$. - Choose the image G that minimizes $s_{k+1}(G)$. Denote the bijection of the image G by φ , and let $S = V_{k+1}(G)$. ### Lemma (Property 1) For any edge $e \in E(F)$, it holds that $\varphi(e) \subseteq U$. ## Lemma (Property 1) For any edge $e \in E(F)$, it holds that $\varphi(e) \subseteq U$. ### Lemma (Property 2) If $u \in U$, $v \notin U$, and $uv \in E(G)$, then all vertices of the hyperedge $\varphi(uv)$ except v lie in U. ## Lemma (Property 1) For any edge $e \in E(F)$, it holds that $\varphi(e) \subseteq U$. ### Lemma (Property 2) If $u \in U$, $v \notin U$, and $uv \in E(G)$, then all vertices of the hyperedge $\varphi(uv)$ except v lie in U. ### Lemma (Property 3) For any vertex $u \in U$ it holds that $\deg_G(u) \geq k$. ### Lemma (Property 1) For any edge $e \in E(F)$, it holds that $\varphi(e) \subseteq U$. ### Lemma (Property 2) If $u \in U$, $v \notin U$, and $uv \in E(G)$, then all vertices of the hyperedge $\varphi(uv)$ except v lie in U. ### Lemma (Property 3) For any vertex $u \in U$ it holds that $\deg_G(u) \geq k$. Let u_1, \ldots, u_ℓ be all the vertices in the set U that have degree less than k in F. Define: $$t_i = d_G(u_i) - d_F(u_i), \quad t = \sum_{i=1}^{\ell} t_i.$$ ### Theorem (H.V. Gravin, D.V. Karpov, 2011) Let \mathcal{H} be a hypergraph where each hyperedge contains at least r vertices, $\Delta(\mathcal{H}) = \Delta$, and $k = \lceil \frac{2\Delta}{r} \rceil$. - The vertices of \mathcal{H} can be properly colored with k+1 colors. - ② If $r \geq 3$ and $k \geq 3$, then the vertices of \mathcal{H} can be properly colored with k colors.