Lecture 3, Introduction to Connectivity

24.10.2024

- A vertex $a \in V(G)$ is called an articulation point if the graph G a is disconnected.
- ullet A block is any maximal connected subgraph of G that does not contain articulation points.
- ullet Due to maximality, a block of graph G is an induced subgraph of G on its vertex set.
- Any subgraph H of graph G without articulation points is included in at least one block (since H can be extended to a maximal subgraph without articulation points).

Lemma

Let B_1 and B_2 be two different blocks of the graph G, with $V(B_1) \cap V(B_2) \neq \emptyset$. Then $V(B_1) \cap V(B_2)$ consists of an articulation point a of the graph G, where a is the only articulation point separating B_1 from B_2 .

Definition

Let B(G) be bipartite graph, where the vertices of one part are the articulation points a_1, \ldots, a_n of the graph G, and the vertices of the other part are its blocks B_1, \ldots, B_m . The vertices a_i and B_j are adjacent if $a_i \in V(B_j)$. There are no other edges in this graph. The graph B(G) is called the block and articulation point tree of the graph G.

Lemma

Let B_1 and B_2 be two different blocks of the graph G, and let P be a path between them in the graph B(G). Then the articulation points of the graph G that separate B_1 from B_2 are exactly those articulation points that lie on the path P. Ot her articulation points do not even separate the union of the blocks along the path P.

Theorem

- The block and articulation point tree is indeed a tree, with all its leaves corresponding to blocks.
- ② An articulation point a separates two blocks B_1 and B_2 in the graph G if and only if a separates B_1 and B_2 in B(G).

Definition

We call a block B extreme if it corresponds to a leaf of the block and articulation point tree. The *interior* Int(B) of a block B is the set of all its vertices that are not articulation points in the graph G.

Theorem

Let B be an extreme block of a connected, but not biconnected graph G with $v(G) \ge 2$, and let G' = G - Int(B). Then the graph G' is connected, and the blocks of G' are all the blocks of G except for B.

Let U_1, \ldots, U_k be all the connected components of the graph G - a, and let $G_i = G(U_i \cup \{a\})$. We decompose the graph G into the graphs G_1, \ldots, G_k .

Lemma

Let $b \in U_i$. Then b separates the vertices $x, y \in V(G_i)$ in G_i if and only if b separates them in G. All the articulation points of the graphs G_1, \ldots, G_k are exactly all the articulation points of the graph G except a.

Algorithm for Constructing the Block and Articulation Point Tree

- Choose an articulation point a and split G at a replacing the graph G with the resulting graphs G_1, \ldots, G_k .
- In each of the graphs G_1, \ldots, G_k , construct the block and articulation point trees. Let $B(G_i) = T_i$.
- In the graph G_i , the vertex a is not an articulation point.
- Take the unique block B_i in G_i that contains a.
- Construct the tree B(G) by joining the trees T_1, \ldots, T_k at the point a (attaching T_i by the edge aB_i).

Let $X, Y \subseteq V(G), R \subseteq V(G) \cup E(G)$.

Definition

We call the set R separating if the graph G - R is disconnected. Let $\mathfrak{R}(G)$ denote the set of all separating sets of the graph G.

Definition

A graph G is k-connected if $v(G) \ge k+1$ and the minimum vertex separating set in the graph G contains at least k vertices.

Bibliography I