Lecture 4, k-Connected Graphs

31.10.2024

Let $X, Y \subseteq V(G), R \subseteq V(G) \cup E(G)$.

Definition

We call the set R separating if the graph G - R is disconnected. Let $\mathfrak{R}(G)$ denote the set of all separating sets of the graph G.

Definition

A graph G is k-connected if $v(G) \ge k+1$ and the minimum vertex separating set in the graph G contains at least k vertices.

Definition

Let $X \nsubseteq R$, $Y \nsubseteq R$. We say that R separates the sets X and Y (or, equivalently, separates X and Y from each other) if no two vertices $v_x \in X$ and $v_y \in Y$ lie in the same connected component of the graph G - R.

- Let $x, y \in V(G)$ be non-adjacent vertices. Denote by $\kappa_G(x, y)$ the size of the smallest set $R \subset V(G)$ such that R separates x and y. If x and y are adjacent, then we set $\kappa_G(x, y) = +\infty$. We call $\kappa_G(x, y)$ the connectivity of vertices x and y.
- ② Let $X, Y \subset V(G)$. Denote by $\kappa_G(X, Y)$ the size of the smallest set $R \subset V(G)$ such that R separates X and Y. If no such set exists, we set $\kappa_G(X, Y) = +\infty$.

Theorem (Menger, 1927, Goring 2000)

[t] Let $X, Y \subset V(G)$, $\infty > \kappa_G(X, Y) \ge k$, $|X| \ge k$, $|Y| \ge k$. Then in the graph G, there exist k disjoint XY-paths.

Corollary

Let vertices $x, y \in V(G)$ be non-adjacent, $\kappa_G(x, y) \geq k$. Then there exist k independent paths from x to y.

Theorem (Whitney, 1932)

Let G be a k-connected graph. Then for any two vertices $x, y \in V(G)$, there exist k independent paths from x to y.

Let $\mathfrak{S} \subset \mathfrak{R}(G)$.

- A set $A \subset V(G)$ is a part of the \mathfrak{S} -partition if no set from \mathfrak{S} separates any two vertices from A, but any other vertex of the graph G is separated from A by at least one set from \mathfrak{S} .
 - The set of all parts of the partition of graph G by the separating sets \mathfrak{S} will be denoted as $\operatorname{Part}(\mathfrak{S})$. When it is unclear which graph is being partitioned, we will write $\operatorname{Part}(G;\mathfrak{S})$.
- ② A vertex of a part $A \in Part(\mathfrak{S})$ is called *internal* if it does not belong to any set from \mathfrak{S} . The set of such vertices will be called the *interior* of part A and denoted as Int(A). Vertices that belong to any set from \mathfrak{S} are called *boundary vertices*, and their set the *boundary* is denoted by Bound(A).

Figure: 4-connected

Figure: 5-connected

We denote by $\mathfrak{R}_k(G)$ the set of all k-vertex separating sets of the graph G.

Lemma

Let $\mathfrak{S} \subset \mathfrak{R}_k(G)$, $A \in \operatorname{Part}(\mathfrak{S})$. Then the following statements hold.

- A vertex $x \in \text{Int}(A)$ is not adjacent to any vertices in the set $V(G) \setminus A$.
- ② If $Int(A) \neq \emptyset$, then Bound(A) separates Int(A) from $V(G) \setminus A$.

Lemma

Let G be a k-connected graph, and let $\mathfrak{S}, \mathfrak{T} \subset \mathfrak{R}_k(G)$.

- Let $A \in \text{Part}(\mathfrak{S})$. Then Bound(A) is the set of all vertices in part A that are adjacent to at least one vertex in $V(G) \setminus A$.
- ② Let $A \in \operatorname{Part}(\mathfrak{S})$ and $A \in \operatorname{Part}(\mathfrak{T})$. Then the boundary of A as part of $\operatorname{Part}(\mathfrak{S})$ coincides with the boundary of A as part of $\operatorname{Part}(\mathfrak{T})$.

Theorem

Let $\mathfrak{S}_1, \ldots, \mathfrak{S}_n \subset \mathfrak{R}(G)$, and let $\mathfrak{S} = \bigcup_{i=1}^n \mathfrak{S}_i$. Consider all sets of vertices of the form

$$A = \bigcap_{i=1}^{n} A_i, \quad where \ A_i \in Part(\mathfrak{S}_i). \tag{1}$$

Then the following statements hold:

- Any part $A \in Part(\mathfrak{S})$ can be represented in the form (1).
- ② $A \in \text{Part}(\mathfrak{S})$ if and only if A is the maximal subset of vertices of the graph G representable in the form (1).
- **③** If a set of vertices A can be represented in the form (1) and $A \notin Part(\mathfrak{S})$, then A is a subset of one of the sets in \mathfrak{S} .

Bibliography I