Lecture 5, Connectivity

07.11.2024

Let $X, Y \subseteq V(G), R \subseteq V(G) \cup E(G)$.

Definition

We call the set R separating if the graph G - R is disconnected. Let $\mathfrak{R}(G)$ denote the set of all separating sets of the graph G.

Definition

A graph G is k-connected if $v(G) \ge k+1$ and the minimum vertex separating set in the graph G contains at least k vertices.

Definition

Let $X \nsubseteq R$, $Y \nsubseteq R$. We say that R separates the sets X and Y (or, equivalently, separates X and Y from each other) if no two vertices $v_x \in X$ and $v_y \in Y$ lie in the same connected component of the graph G - R.

- Let $x, y \in V(G)$ be non-adjacent vertices. Denote by $\kappa_G(x, y)$ the size of the smallest set $R \subset V(G)$ such that R separates x and y. If x and y are adjacent, then we set $\kappa_G(x, y) = +\infty$. We call $\kappa_G(x, y)$ the connectivity of vertices x and y.
- ② Let $X, Y \subset V(G)$. Denote by $\kappa_G(X, Y)$ the size of the smallest set $R \subset V(G)$ such that R separates X and Y. If no such set exists, we set $\kappa_G(X, Y) = +\infty$.

Theorem (Menger, 1927, Goring 2000)

[t] Let $X, Y \subset V(G)$, $\infty > \kappa_G(X, Y) \ge k$, $|X| \ge k$, $|Y| \ge k$. Then in the graph G, there exist k disjoint XY-paths.

Corollary

Let vertices $x, y \in V(G)$ be non-adjacent, $\kappa_G(x, y) \geq k$. Then there exist k independent paths from x to y.

Theorem (Whitney, 1932)

Let G be a k-connected graph. Then for any two vertices $x, y \in V(G)$, there exist k independent paths from x to y.

Let $\mathfrak{S} \subset \mathfrak{R}(G)$.

- A set $A \subset V(G)$ is a part of the \mathfrak{S} -partition if no set from \mathfrak{S} separates any two vertices from A, but any other vertex of the graph G is separated from A by at least one set from \mathfrak{S} .
 - The set of all parts of the partition of graph G by the separating sets \mathfrak{S} will be denoted as $\operatorname{Part}(\mathfrak{S})$. When it is unclear which graph is being partitioned, we will write $\operatorname{Part}(G;\mathfrak{S})$.
- ② A vertex of a part $A \in Part(\mathfrak{S})$ is called *internal* if it does not belong to any set from \mathfrak{S} . The set of such vertices will be called the *interior* of part A and denoted as Int(A). Vertices that belong to any set from \mathfrak{S} are called *boundary vertices*, and their set the *boundary* is denoted by Bound(A).

Figure: 4-connected

Figure: 5-connected

We denote by $\mathfrak{R}_k(G)$ the set of all k-vertex separating sets of the graph G.

Lemma

Let $\mathfrak{S} \subset \mathfrak{R}_k(G)$, $A \in \operatorname{Part}(\mathfrak{S})$. Then the following statements hold.

- A vertex $x \in \text{Int}(A)$ is not adjacent to any vertices in the set $V(G) \setminus A$.
- ② If $Int(A) \neq \emptyset$, then Bound(A) separates Int(A) from $V(G) \setminus A$.

Let G be a k-connected graph, and let $\mathfrak{S}, \mathfrak{T} \subset \mathfrak{R}_k(G)$.

- Let $A \in \text{Part}(\mathfrak{S})$. Then Bound(A) is the set of all vertices in part A that are adjacent to at least one vertex in $V(G) \setminus A$.
- ② Let $A \in \text{Part}(\mathfrak{S})$ and $A \in \text{Part}(\mathfrak{T})$. Then the boundary of A as part of $\text{Part}(\mathfrak{S})$ coincides with the boundary of A as part of $\text{Part}(\mathfrak{T})$.

Theorem

Let $\mathfrak{S}_1, \ldots, \mathfrak{S}_n \subset \mathfrak{R}(G)$, and let $\mathfrak{S} = \bigcup_{i=1}^n \mathfrak{S}_i$. Consider all sets of vertices of the form

$$A = \bigcap_{i=1}^{n} A_i, \quad where \ A_i \in Part(\mathfrak{S}_i). \tag{1}$$

Then the following statements hold:

- Any part $A \in Part(\mathfrak{S})$ can be represented in the form (1).
- ② $A \in \text{Part}(\mathfrak{S})$ if and only if A is the maximal subset of vertices of the graph G representable in the form (1).
- **③** If a set of vertices A can be represented in the form (1) and $A \notin Part(\mathfrak{S})$, then A is a subset of one of the sets in \mathfrak{S} .

Proof.

On the whiteboard.

Let $\mathfrak{S}, \mathfrak{T} \subset \mathfrak{R}(G)$, and let a part $A \in \operatorname{Part}(\mathfrak{S})$ be such that none of the sets in \mathfrak{T} separate it. Then $A \in \operatorname{Part}(\mathfrak{S} \cup \mathfrak{T})$.

Let $\mathfrak{S}, \mathfrak{T} \subset \mathfrak{R}(G)$, and let a part $A \in \operatorname{Part}(\mathfrak{S})$ be such that none of the sets in \mathfrak{T} separate it. Then $A \in \operatorname{Part}(\mathfrak{S} \cup \mathfrak{T})$.

Proof.

- None of the sets in $\mathfrak{S} \cup \mathfrak{T}$ separates A, so there exists a part $B \in \operatorname{Part}(\mathfrak{S} \cup \mathfrak{T})$ such that $A \subset B$.
- There exists a part $A' \in \operatorname{Part}(\mathfrak{S})$ containing B. Then $A \subset B \subset A'$, from which it is obvious that A = B = A'.

ullet From now on, let G be a k-connected graph.

Definition

We call distinct sets $S, T \in \mathfrak{R}_k(G)$ independent if S does not separate T and T does not separate S. Otherwise, we will call these sets dependent.

 \bullet From now on, let G be a k-connected graph.

Definition

We call distinct sets $S, T \in \mathfrak{R}_k(G)$ independent if S does not separate T and T does not separate S. Otherwise, we will call these sets dependent.

Lemma

Let $S, T \in \mathfrak{R}_k(G)$ and $A \in \operatorname{Part}(S) \colon T \cap \operatorname{Int}(A) = \emptyset$. Then T does not separate part A and, consequently, T does not separate set S.

Can it be that $Int(A) = \emptyset$, for some $A \in Part(S)$?

 \bullet From now on, let G be a k-connected graph.

Definition

We call distinct sets $S, T \in \mathfrak{R}_k(G)$ independent if S does not separate T and T does not separate S. Otherwise, we will call these sets dependent.

Lemma

Let $S, T \in \mathfrak{R}_k(G)$ and $A \in \operatorname{Part}(S) \colon T \cap \operatorname{Int}(A) = \emptyset$. Then T does not separate part A and, consequently, T does not separate set S.

Proof.

- $G(\operatorname{Int}(A))$ is connected, and $\forall x \in S \setminus T$ is adjacent to at least one vertex in the set $\operatorname{Int}(A)$.
- Consequently, the graph $G(\operatorname{Int}(A) \cup (S \setminus T))$ is connected, from which it is evident that T does not separate A. \square

Let $S, T \in \mathfrak{R}_k(G)$ be such that the set S does not separate T. Then T and S are independent.

Let $S, T \in \mathfrak{R}_k(G)$ be such that the set S does not separate T. Then T and S are independent.

Proof.

- T can intersect the interior of at most one part of Part(S). (why?)
- $\exists A \in \text{Part}(S) \colon \text{Int}(A) \cap T = \emptyset \implies T \text{ does not separate } S.$

Let $S, T \in \mathfrak{R}_k(G)$ be such that the set S does not separate T. Then T and S are independent.

Proof.

- T can intersect the interior of at most one part of Part(S).
- $\exists A \in \text{Part}(S) \colon \text{Int}(A) \cap T = \emptyset \implies T \text{ does not separate } S.$

We conclude that one of two cases is possible: either the sets S and T separate each other (then they are dependent), or the sets S and T do not separate each other (then they are independent).

Let $S, T \in \mathfrak{R}_k(G)$ be independent, and $A \in \operatorname{Part}(S)$ contain T. Then in $\operatorname{Part}(T)$ there $\exists ! B \in \operatorname{Part}(T) : B \supset \operatorname{Part}(S) \setminus A$ and $\operatorname{Part}(T) \setminus B \subset A$.

Let $S, T \in \mathfrak{R}_k(G)$ be independent, and $A \in \operatorname{Part}(S)$ contain T. Then in $\operatorname{Part}(T)$ there $\exists ! B \in \operatorname{Part}(T) : B \supset \operatorname{Part}(S) \setminus A$ and $\operatorname{Part}(T) \setminus B \subset A$.

Proof.

- The set T does not intersect the interiors of parts of Part(S) distinct from A. Hence, the set T does not separate any part of Part(S) distinct from A.
- Since $S \setminus T \neq \emptyset$, all these parts are contained within a single part of Part(T). (why?)

What about separating set with more than 2 parts?

Lemma

- All sets T_1, \ldots, T_m ; S_1, \ldots, S_n are non-empty.
- ② $\operatorname{Part}(\{S,T\}) = \{G_{i,j}\}_{i \in [1..m], j \in [1..n]}, \text{ with } \operatorname{Bound}(G_{i,j}) = P \cup T_i \cup S_j.$

Lemma

- All sets T_1, \ldots, T_m ; S_1, \ldots, S_n are non-empty.
- ② $\operatorname{Part}(\{S,T\}) = \{G_{i,j}\}_{i \in [1..m], j \in [1..n]}, \text{ with } \operatorname{Bound}(G_{i,j}) = P \cup T_i \cup S_j.$

Proof.

• (why?) .

Lemma

- All sets T_1, \ldots, T_m ; S_1, \ldots, S_n are non-empty.
- ② $\operatorname{Part}(\{S,T\}) = \{G_{i,j}\}_{i \in [1..m], j \in [1..n]}, \text{ with } \operatorname{Bound}(G_{i,j}) = P \cup T_i \cup S_j.$

Proof.

- Trivially.
- ② Parts Part($\{S,T\}$) are maximal by inclusion among sets of the form $G_{i,j}$. But $G_{\alpha,\beta} \not\subset G_{\gamma,\delta}$ for $(\alpha,\beta) \neq (\gamma,\delta)$. The statement Bound $(G_{i,j}) = P \cup T_i \cup S_j$ is trivial.

 $|\operatorname{Bound}(G_{i,j})| \geq k$ for any i, j since it is a separating set, right?

- Let $i \neq x, j \neq y$, $|\operatorname{Bound}(G_{i,j})| \geq k$ and $|\operatorname{Bound}(G_{x,y})| \geq k$. Then $|\operatorname{Bound}(G_{i,j})| = |\operatorname{Bound}(G_{x,y})| = k$, $|\operatorname{Part}(S)| = |\operatorname{Part}(T)| = 2$, $|T_i| = |S_y|$, and $|T_x| = |S_j|$.
- ② If all parts of $Part(\{S, T\})$ contain at least k vertices, then each part of $Part(\{S, T\})$ has exactly k vertices, |Part(S)| = |Part(T)| = 2, and $|T_1| = |T_2| = |S_1| = |S_2|$.

Proof.

Whiteboard.

Definition

Let $S \in \mathfrak{R}_k(G)$, and let H be a connected component of the graph G - S. We will call H a fragment. We will call the set S the boundary of the fragment H and denote it by Bound(H).

Definition

Let $S \in \mathfrak{R}_k(G)$, and let H be a connected component of the graph G - S. We will call H a fragment. We will call the set S the boundary of the fragment H and denote it by Bound(H).

- ullet Fragments are the interiors of parts of a partition of the graph G by a k-vertex separating set.
- We will show that the concepts of a fragment and its boundary have an independent meaning.

Lemma

Let H be a fragment in a k-connected graph G. Then $Bound(H) = N_G(H)$.

Definition

Let $S \in \mathfrak{R}_k(G)$, and let H be a connected component of the graph G - S. We will call H a fragment. We will call the set S the boundary of the fragment H and denote it by Bound(H).

- ullet Fragments are the interiors of parts of a partition of the graph G by a k-vertex separating set.
- We will show that the concepts of a fragment and its boundary have an independent meaning.

Lemma

Let H be a fragment in a k-connected graph G. Then $Bound(H) = N_G(H)$.

Proof.

Trivial.

Can it happen that $\exists A \colon A \in \operatorname{Part}(S) \cap \operatorname{Part}(T)$ and $A \neq \emptyset$?

Let H be a fragment of the graph G, $T \in \mathfrak{R}_k(G)$, with $T \cap H \neq \emptyset$, and T is independent with $\operatorname{Bound}(H)$. Then $T \not\supseteq H$ and exists a fragment $H' \subseteq H$: $\operatorname{Bound}(H') = T$.

Let H be a fragment of the graph G, $T \in \mathfrak{R}_k(G)$, with $T \cap H \neq \emptyset$, and T is independent with $\operatorname{Bound}(H)$. Then $T \not\supseteq H$ and exists a fragment $H' \subseteq H$: $\operatorname{Bound}(H') = T$.

Proof.

- Let S = Bound(H), and let $A \in \text{Part}(S)$: H = Int(A).
- \bullet $T \subset A$

Let H be a fragment of the graph $G, T \in \mathfrak{R}_k(G)$, with $T \cap H \neq \emptyset$, and T is independent with Bound(H). Then $T \not\supseteq H$ and exists a fragment $H' \subseteq H$: Bound(H') = T.

Proof.

- Let S = Bound(H), and let $A \in \text{Part}(S)$: H = Int(A).
- $T \subset A$, since S, T are independent.
- Hence $\exists B \in \operatorname{Part}(T) \text{ s.t. } B \subset A. \text{ Thus, } T \not\supseteq H.$

Bibliography I