Lecture 6. Connectivity and Colourings

14.11.2024

Abstract

Below you will see some problems, some of them just problems from your homework and some more related to our lecture topics. The entire set would be counted as a homework (so it is a chance to get some extra points). Please, indicate in our spreadsheet which tasks you have solved. You are allowed to work in groups and use lecture notes. If I refer to some theorem (without stating it), then it means that we've already proved it on lectures and you can find it in the slides. Also, some problems have **hints** right in your sheet, you should read them together with the statement. And there are several lemmas and theorems that you do **not** need to prove and can use freely. On the next lecture, we will discuss the problems and I will prove all the statements.

By $G \cdot e$, where $e \in E(G)$ we denote the contraction of the edge e in the graph G.

1. (hw1, 11) $\Delta(G) \leq 2000$ (maximum degree of G). Prove that we can color halves of edges (color for one side and color for the other side) in colors from the set $\{1, 2, 3, \ldots, 2000\}$ such that halves of a single edge are differ by exactly 1. And that all halves incident to any vertex are colored differently.

Hint: Use some theory about factors of a graph. Complete to the regular graph, then use Petersen's two factor theorem. Color edges according to the factors.

2. (hw2, 5a) Let $n \geqslant 5$. The edges of the complete graph K_n are colored black and white. Prove that the vertices of K_n can be divided into two groups V_1 and V_2 such that there exists a Hamiltonian path in $G(V_1)$ consisting of white edges, and a Hamiltonian path in $G(V_2)$ consisting of black edges.

Hint:Prove that there is a Hamiltonian path, such that at first it uses only white edges, and then only black edges by induction.

3. (hw4, 4) Let G be a biconnected graph with $v(G) \ge 4$ and $e \in E(G)$. Prove that at least one of the graphs G - e and $G \cdot e$ is biconnected.

Hint: Use blocks and articulation points tree. Let T be a blocks and articulation points tree of G - e and G - e is not biconnected. Let ab = e, then it is easy to see that a, b in two different blocks (and they are not articulation points) and that T is just a path. Hence, $G \cdot e$ is biconnected.

4. (hw4, 5) The graph G is connected. We call a *separator* a minimal set of vertices whose removal disconnects the graph. Let S and R be separators of the graph G. It is known that S does not separate R. Prove that R does not separate S (it is possible that $|R| \neq |S|$).

Hint: Use reasoning similar to the proof from Lecture (but it was for k-connected graphs).

5. (hw4, 6) Prove that any graph with a minimum degree of 2k contains a (k+1)-edge-connected subgraph. (A graph is called n-edge-connected if it remains connected when fewer than n edges are removed.)

Hint: Prove by induction statement that is stronger that the problem statement.

Hint2: Make statement stronger: if sum of degrees is at least $2\nu(G)k - 2k + 1$, then each cut has size at least k.

Definition 1. By $\chi(G)$ we denote the chromatic number of a graph G. I.e. the minimal number of colours needed to colour the vertices of G such that no two adjacent vertices have the same colour.

- 6. Draw a graph with $\Delta(G) \leq d$ such that $\chi(G) > d$.
- 7. Let G be a connected graph, $\Delta(G) \leq d$ and $\delta(G) \leq d-1$. Prove that $\chi(G) \leq d$.
- 8. Let $G: \Delta(G) = \delta(G) = d$ and G is connected, but not biconnected. Prove that $\chi(G) \leq d$.

Definition 2. Let $k \in \mathbb{N}$. We say that a graph G is k-reducible, if its vertices can be enumerated v_1, \ldots, v_n such that each vertex v_i is disjoint with at most k vertices from the set $\{v_{i+1}, \ldots, v_n\}$.

- 9. Prove that if for any subgraph H of G we have $\delta(H) \leq k-1$, then G is k-reducible.
- 10. Prove that if G is k-reducible, then for any subgraph H of G we have $\delta(H) \leq k-1$.

Definition 3. We say that G is k-critical, if $\chi(G) = k$ and for any subgraph $H \subsetneq G$ we have $\chi(H) < k$.

- 11. Prove that if G is k-critical, then $\delta(G) \ge k 1$.
- 12. Let G k-critical and $S \subset V(G)$ its separating set, |S| < k. Prove that G[S] is not a complete graph. Where G[S] denoted a subgraph of G induced by the set S.
- 13. Prove that $\forall k \in \mathbb{N}$ there is a graph G that is triangle-free, $\chi(G) = k$.

Hint: You've seen it on Discrete Mathematics course.

Definition 4. For any number $k \in \mathbb{N}$, denote $\chi_G(k)$ – the number of right colourings of the graph G into k colours.

- 14. Let $e \in E(G)$, prove that $\chi_{G-e}(k) = \chi_G(k) + \chi_{G-e}(k)$.
- 15. Prove that if G has no self-loops, then $\chi_G(k)$ is a polynomial of degree $\nu(G)$ over \mathbb{Z} . Moreover, if $n = \nu(G)$ and $\chi_G(k) = a_0 + a_1k + \ldots + a_nk^n$, then $a_n \geqslant 0$, $a_{n-1} \leqslant 0$, $a_{n-2} \geqslant 0$, $a_{n-3} \leqslant 0$ and so on.
- 16. If G_1, \ldots, G_n are connected components of the graph G, then $\chi_G(k) = \prod_{i=1}^n \chi_{G_i}(k)$. And that if p is a 0 multiplicity (i.e. $\chi_G(k) = k^p \cdot h(k)$ and $h(0) \neq 0$), then the number of components is p.
- 17. (hw4, 7a) The edges of a complete graph on 4000 vertices vertices are colored in three colors. Prove that this graph contains a monochromatic simple cycle of odd length at least 41.

Hint: Use the fact that any graph with average degree $x \ge 2$ contains a cycle of length at least x. Consider colour with maximal number of edges.