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Denote by st(G) the number of spanning trees of a connected graph G.

Theorem (A. Cayley, 1889)
Let G be a graph where loops and multiple edges are allowed, and let e ∈ E(G) be an
edge that is not a loop. Then

st(G) = st(G− e) + st(G ∗ e).

Proof.
The number of spanning trees of the graph G that do not contain the edge e is
obviously equal to st(G− e).
There is a bijection between the spanning trees containing the edge e and the
spanning trees of the graph G ∗ e, given by T → T ∗ e (where T is a spanning tree
of G, e ∈ E(T )).

Picture!
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Theorem (C. Cayley, 1889)
st(Kn) = nn−2.

H. Prüfer, 1918.
On the whiteboard.
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By u(T ) denote the number of leaves in a tree T .

Theorem (S. Schuster, 1983)
Let a connected graph G have spanning trees with m and n leaves, where m < n.
Then, for any natural number k ∈ [m,n], there exists a spanning tree of G with exactly
k leaves.

Proof.
Let T1 and T ∗ be spanning trees with u(T1) = n and u(T ∗) = m, respectively.
Starting from the tree T1, we will perform the following step iteratively. Assume that
a sequence of spanning trees T1, . . . , Ti of G has been constructed.
If Ti ̸= T ∗, then there exists an edge ei ∈ E(T ∗) \ E(Ti). Let Gi = Ti + ei.
If Ti ̸= T ∗, then there is an edge ei ∈ E(T ∗) \ E(Ti). Let Gi := Ti + ei.
Picture!
In the graph Gi, there is exactly one simple cycle Ci that includes the edge ei.
Clearly, E(Ci) ̸⊆ E(T ∗), so there exists an edge fi ∈ E(Ci) \ E(T ∗). Define

Ti+1 = Gi − fi = Ti + ei − fi.
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Since the tree Ti+1 contains more edges from E(T ∗) than Ti, at some point, we must
reach Tℓ = T ∗.
Consider the sequence of trees T1, T2, . . . , Tℓ = T ∗.
The trees Ti and Ti+1 differ by exactly two edges. Therefore,

|u(Ti)− u(Ti+1)| ≤ 2.

Hence, the numbers of leaves in the trees of this sequence cover the interval [m,n]
without skipping more than one number.
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Let t ∈ [m,n], and suppose there is no tree with t leaves in our sequence.
Then there exists some j such that u(Tj) = t+ 1 and u(Tj+1) = t− 1. By
construction, Tj+1 = Gj − fj and Tj = Gj − ej , where fj = ab and ej = xy.
Picture!
Then dGj (a) = dGj (b) = 2 and dGj (x) > 2, dGj (y) > 2. (why?)

Since both vertices a
and b become leaves after removing the edge ej , and vertices x and y do not become
leaves after removing the edge fj).
Thus, in the cycle Cj , there are vertices of degree 2 and vertices of degree greater than
2. Hence, one of the edges e′ = uw ∈ E(Cj) has dGj (u) > 2 and dGj (w) = 2. Then, in
the tree T ′ = Gi − e′, exactly one vertex in V (Ci), namely w, becomes a leaf, so
u(T ′) = t.
Picture!
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Theorem (D. J. Kleitman, D. B. West, 1991)
In a connected graph G with δ(G) ≥ 3, there exists a spanning tree with at least
v(G)
4 + 2 leaves.

Picture!

Proof.
We present an algorithm to construct a spanning tree with the desired number of
leaves. The algorithm will iteratively identify a tree in G, step by step, by adding
vertices.
Assume that at some point, we have already constructed a tree F , which is a
subgraph of G.
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Definition
A leaf x of the tree F is called dead if all vertices of G adjacent to x are included
in the tree F .
The number of dead vertices of the tree F is denoted by b(F ).

Dead vertices will remain dead leaves at all subsequent stages of the construction. For the
tree F , we define

α(F ) =
3

4
u(F ) +

1

4
b(F )− 1

4
v(F ).

We aim to construct a spanning tree T of the graph G such that α(T ) ≥ 2. (why?)

Since all leaves in the spanning tree are dead, it follows that

u(T ) = b(T ) =
1

4
v(G) + α(T ),

and the tree T satisfies the required conditions.
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Invariant.
Suppose that after several steps of construction, we have obtained a tree F
(V (F ) ⊆ V (G), E(F ) ⊆ E(G)).
Assume that as a result of the step, ∆v vertices were added, the number of leaves
increased by ∆u, and the number of dead vertices increased by ∆b.
Define the gain of the step S as the quantity

P (S) =
3

4
∆u+

1

4
∆b− 1

4
∆v.

We will perform only steps with non-negative gain. When calculating the gain of a
step, we will assume that all added vertices that are not explicitly identified as dead
are not dead. This assumption only reduces the gain of the step.
Clearly, for the final spanning tree T , the value of α(T ) will be the sum of α(F ′)
(where F ′ is the base tree, whose construction will be described later) and the sum of
the gains of all steps.
We will describe several options for steps of the algorithm. We will proceed to the
next option only when we confirm the impossibility of all previous options.
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Steps of the Algorithm

Introduce the notation W = V (G) \ V (F ).
S1. There is a non-leaf vertex x in the tree F adjacent to a vertex y ∈ W . Add y to the
tree, resulting in

∆v = ∆u = 1. The gain is:

P (S1) ≥ 3

4
· 1− 1

4
· 1 =

1

2
.

S2. There is a vertex x in the tree F adjacent to at least two vertices in W . Add these
two vertices to the tree, resulting in ∆v = 2, ∆u = 1. The gain is:

P (S2) ≥ 3

4
· 1− 2 · 1

4
=

1

4
.

S3. There is a vertex y ∈ W adjacent to the tree F and at least two vertices in W . Add y
and its two adjacent vertices to the tree, resulting in ∆v = 3, ∆u = 1. The gain is:

P (S3) ≥ 3

4
· 1− 3 · 1

4
= 0.

Picture!
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S1: Each non-leaf in F is not adjacent to W .
S2: Each leaf is adjacent to at most one vertex of W .
S3: For any y ∈ W if it is adjacent to F , then y has at most one neighbour in W .

If F ̸= ∅, then there exists a vertex y ∈ W adjacent to the tree F .
dG(y) ≥ 3, so y is adjacent to two vertices x, x′ ∈ V (F ). Connect y to x. Since it is
impossible to perform S1 or S2, the vertex x′ is a leaf in the tree F and is adjacent to
exactly one vertex from W , which is y.
Therefore, in the new tree, x′ is a dead vertex. Thus, ∆v = 1, ∆b ≥ 1, and

P (S4) ≥ 1

4
− 1

4
≥ 0.

Picture!
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Construction of the Base Tree.
We want to start with a base tree F ′ such that α(F ′) ≥ 3

2 . Then we will explain why,
during the construction process, an additional 1

2 will be added on top of the gains
calculated for the steps. Let us consider two cases.

Case B1. The graph G has a vertex a of degree at least 4.
The base tree F ′ is a tree where the vertex a is connected to k ≥ 4 vertices from its
neighborhood. We have:

v(F ′) =?, u(F ′) =?,

and
α(F ′) ≥?
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Case B2. All vertices in G have degree 3.
First, consider a tree F ′, where a vertex a is connected to three vertices b1, b2, b3 from
its neighborhood. Clearly,

α(F ′) ≥

3

4
· 3− 1

4
· 4 =

5

4
.

We are short by 1
4 , and if one of the three leaves of F ′ is dead, it contributes an

additional 1
4 , making α(F ′) ≥ 3

2 .
The remaining case is when each of the vertices b1, b2, b3 is adjacent to at least one
vertex outside V (F ′).
In our case, all vertices of G have degree 3, and the sum of the degrees of the vertices
in the induced subgraph G({a, b1, b2, b3}) is even. Therefore, one of the vertices
b1, b2, b3 must be adjacent to at least two vertices outside V (F ′).
Then, we perform step S2 and add a gain of 1

4 , which suffices.
Picture!
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To complete the proof of the theorem, it remains to show that the steps of the
construction contribute an additional gain of at least 1

2 . To do this, let us analyze the end
of the construction process.

If the last step was S1, its gain is at least 1
2 .

Suppose the last step was S2 or S3. In this case, we added two new leaves, which
must be dead since no more steps can be performed.
This contributes an additional gain of at least 1

2 . Note that even if the last step was
S2 described in Case B2, the gain from these two dead vertices was not accounted for
in that step.
Suppose the last step was S4. Then, the added vertex y (see figure) turned out to be
dead (contributing 1

4), meaning that y was adjacent only to vertices in the tree F .
However, dG(y) = 3, meaning there were three such vertices, not just one, as
accounted for in the description of step S4. Thus, we find two additional dead
vertices, contributing 1

2 , thereby completing the proof of the theorem.
∅
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Definition. Let T be a spanning tree of a connected graph G.
For any edge e ∈ E(G) \ E(T ), the graph T + e contains a unique cycle Ce, which
passes through e. We call Ce the fundamental cycle of the edge e with respect to the
tree T .
Let f ∈ E(Ce), f ̸= e. Then T ′ = T + e− f is also a spanning tree of G. We say that
T ′ is obtained from T by replacing the edge e with f .

Definition.
Consider ordered sets T = (T1, . . . , Tk) of k spanning trees of the graph G. Let T be
the set of all such ordered sets.
Define E(T) = E(T1) ∪ · · · ∪ E(Tk) and e(T) = |E(T)|.
A sequence of edges e0, . . . , en is called a sequence of replacements for T, starting with
e0, if:

en /∈ E(T);
For every i < n, there exists an index s(i) such that ei ∈ E(Ts(i)), and ei+1 lies on the
fundamental cycle of ei with respect to the tree Ts(i).
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