Lecture 8, Spanning Trees

28.11.2024

Content

• Number of spanning trees

2 Intermediate Value Theorem

3 Number of leaves in a spanning tree of a connected graph with $\delta(G) \geq 3$

Denote by st(G) the number of spanning trees of a connected graph G.

Theorem (A. Cayley, 1889)

Let G be a graph where loops and multiple edges are allowed, and let $e \in E(G)$ be an edge that is not a loop. Then

$$st(G) = st(G - e) + st(G * e).$$

Denote by st(G) the number of spanning trees of a connected graph G.

Theorem (A. Cayley, 1889)

Let G be a graph where loops and multiple edges are allowed, and let $e \in E(G)$ be an edge that is not a loop. Then

$$st(G) = st(G - e) + st(G * e).$$

Proof.

- The number of spanning trees of the graph G that do not contain the edge e is obviously equal to st(G-e).
- There is a bijection between the spanning trees containing the edge e and the spanning trees of the graph G * e, given by $T \to T * e$ (where T is a spanning tree of G, $e \in E(T)$).

Theorem (C. Cayley, 1889)

$$st(K_n) = n^{n-2}.$$

H. Prüfer, 1918.

On the whiteboard.

Content

Number of spanning trees

2 Intermediate Value Theorem

3 Number of leaves in a spanning tree of a connected graph with $\delta(G) \geq 3$

By u(T) denote the number of leaves in a tree T.

Theorem (S. Schuster, 1983)

Let a connected graph G have spanning trees with m and n leaves, where m < n. Then, for any natural number $k \in [m, n]$, there exists a spanning tree of G with exactly k leaves.

Proof.

- Let T_1 and T^* be spanning trees with $u(T_1) = n$ and $u(T^*) = m$, respectively.
- Starting from the tree T_1 , we will perform the following step iteratively. Assume that a sequence of spanning trees T_1, \ldots, T_i of G has been constructed.
- If $T_i \neq T^*$, then there exists an edge $e_i \in E(T^*) \setminus E(T_i)$. Let $G_i = T_i + e_i$.
- If $T_i \neq T^*$, then there is an edge $e_i \in E(T^*) \setminus E(T_i)$. Let $G_i := T_i + e_i$. Picture!
- In the graph G_i , there is exactly one simple cycle C_i that includes the edge e_i . Clearly, $E(C_i) \not\subseteq E(T^*)$, so there exists an edge $f_i \in E(C_i) \setminus E(T^*)$. Define

$$T_{i+1} = G_i - f_i = T_i + e_i - f_i.$$

- Since the tree T_{i+1} contains more edges from $E(T^*)$ than T_i , at some point, we must reach $T_{\ell} = T^*$.
- Consider the sequence of trees $T_1, T_2, \ldots, T_{\ell} = T^*$.
- The trees T_i and T_{i+1} differ by exactly two edges. Therefore,

$$|u(T_i) - u(T_{i+1})| \le 2.$$

Hence, the numbers of leaves in the trees of this sequence cover the interval [m, n] without skipping more than one number.

- Let $t \in [m, n]$, and suppose there is no tree with t leaves in our sequence.
- Then there exists some j such that $u(T_j) = t + 1$ and $u(T_{j+1}) = t 1$. By construction, $T_{j+1} = G_j f_j$ and $T_j = G_j e_j$, where $f_j = ab$ and $e_j = xy$. Picture!
- Then $d_{G_j}(a) = d_{G_j}(b) = 2$ and $d_{G_j}(x) > 2$, $d_{G_j}(y) > 2$. (why?)

- Let $t \in [m, n]$, and suppose there is no tree with t leaves in our sequence.
- Then there exists some j such that $u(T_j) = t + 1$ and $u(T_{j+1}) = t 1$. By construction, $T_{j+1} = G_j f_j$ and $T_j = G_j e_j$, where $f_j = ab$ and $e_j = xy$.
- Then $d_{G_j}(a) = d_{G_j}(b) = 2$ and $d_{G_j}(x) > 2$, $d_{G_j}(y) > 2$. Since both vertices a and b become leaves after removing the edge e_j , and vertices x and y do not become leaves after removing the edge f_j).
- Thus, in the cycle C_j , there are vertices of degree 2 and vertices of degree greater than 2. Hence, one of the edges $e' = uw \in E(C_j)$ has $d_{G_j}(u) > 2$ and $d_{G_j}(w) = 2$. Then, in the tree $T' = G_i e'$, exactly one vertex in $V(C_i)$, namely w, becomes a leaf, so u(T') = t.

Content

Number of spanning trees

2 Intermediate Value Theorem

3 Number of leaves in a spanning tree of a connected graph with $\delta(G) \geq 3$

Theorem (D. J. Kleitman, D. B. West, 1991)

In a connected graph G with $\delta(G) \geq 3$, there exists a spanning tree with at least $\frac{v(G)}{A} + 2$ leaves.

Theorem (D. J. Kleitman, D. B. West, 1991)

In a connected graph G with $\delta(G) \geq 3$, there exists a spanning tree with at least $\frac{v(G)}{4} + 2$ leaves.

Proof.

- We present an algorithm to construct a spanning tree with the desired number of leaves. The algorithm will iteratively identify a tree in G, step by step, by adding vertices.
- Assume that at some point, we have already constructed a tree F, which is a subgraph of G.

Definition

- A leaf x of the tree F is called *dead* if all vertices of G adjacent to x are included in the tree F.
- The number of dead vertices of the tree F is denoted by b(F).

Dead vertices will remain dead leaves at all subsequent stages of the construction. For the tree F, we define

$$\alpha(F) = \frac{3}{4}u(F) + \frac{1}{4}b(F) - \frac{1}{4}v(F).$$

• We aim to construct a spanning tree T of the graph G such that $\alpha(T) \geq 2$. (why?)

Definition

- A leaf x of the tree F is called dead if all vertices of G adjacent to x are included in the tree F.
- The number of dead vertices of the tree F is denoted by b(F).

Dead vertices will remain dead leaves at all subsequent stages of the construction. For the tree F, we define

$$\alpha(F) = \frac{3}{4}u(F) + \frac{1}{4}b(F) - \frac{1}{4}v(F).$$

- We aim to construct a spanning tree T of the graph G such that $\alpha(T) \geq 2$.
- Since all leaves in the spanning tree are dead, it follows that

$$u(T) = b(T) = \frac{1}{4}v(G) + \alpha(T),$$

and the tree T satisfies the required conditions.

Invariant.

- Suppose that after several steps of construction, we have obtained a tree F $(V(F) \subseteq V(G), E(F) \subseteq E(G)).$
- Assume that as a result of the step, Δv vertices were added, the number of leaves increased by Δu , and the number of dead vertices increased by Δb .
- \bullet Define the gain of the step S as the quantity

$$P(S) = \frac{3}{4}\Delta u + \frac{1}{4}\Delta b - \frac{1}{4}\Delta v.$$

- We will perform only steps with non-negative gain. When calculating the gain of a step, we will assume that all added vertices that are not explicitly identified as dead are not dead. This assumption only reduces the gain of the step.
- Clearly, for the final spanning tree T, the value of $\alpha(T)$ will be the sum of $\alpha(F')$ (where F' is the base tree, whose construction will be described later) and the sum of the gains of all steps.
- We will describe several options for steps of the algorithm. We will proceed to the next option only when we confirm the impossibility of all previous options.

Introduce the notation $W = V(G) \setminus V(F)$.

S1. There is a non-leaf vertex x in the tree F adjacent to a vertex $y \in W$. Add y to the tree, resulting in

Introduce the notation $W = V(G) \setminus V(F)$.

S1. There is a non-leaf vertex x in the tree F adjacent to a vertex $y \in W$. Add y to the tree, resulting in $\Delta v = \Delta u = 1$. The gain is:

$$P(S1) \ge \frac{3}{4} \cdot 1 - \frac{1}{4} \cdot 1 = \frac{1}{2}.$$

S2. There is a vertex x in the tree F adjacent to at least two vertices in W. Add these two vertices to the tree, resulting in

Introduce the notation $W = V(G) \setminus V(F)$.

S1. There is a non-leaf vertex x in the tree F adjacent to a vertex $y \in W$. Add y to the tree, resulting in $\Delta v = \Delta u = 1$. The gain is:

$$P(S1) \ge \frac{3}{4} \cdot 1 - \frac{1}{4} \cdot 1 = \frac{1}{2}.$$

S2. There is a vertex x in the tree F adjacent to at least two vertices in W. Add these two vertices to the tree, resulting in $\Delta v = 2$, $\Delta u = 1$. The gain is:

$$P(S2) \ge \frac{3}{4} \cdot 1 - 2 \cdot \frac{1}{4} = \frac{1}{4}.$$

S3. There is a vertex $y \in W$ adjacent to the tree F and at least two vertices in W. Add y and its two adjacent vertices to the tree, resulting in

Introduce the notation $W = V(G) \setminus V(F)$.

S1. There is a non-leaf vertex x in the tree F adjacent to a vertex $y \in W$. Add y to the tree, resulting in $\Delta v = \Delta u = 1$. The gain is:

$$P(S1) \ge \frac{3}{4} \cdot 1 - \frac{1}{4} \cdot 1 = \frac{1}{2}.$$

S2. There is a vertex x in the tree F adjacent to at least two vertices in W. Add these two vertices to the tree, resulting in $\Delta v = 2$, $\Delta u = 1$. The gain is:

$$P(S2) \ge \frac{3}{4} \cdot 1 - 2 \cdot \frac{1}{4} = \frac{1}{4}.$$

S3. There is a vertex $y \in W$ adjacent to the tree F and at least two vertices in W. Add y and its two adjacent vertices to the tree, resulting in $\Delta v = 3$, $\Delta u = 1$. The gain is:

$$P(S3) \ge \frac{3}{4} \cdot 1 - 3 \cdot \frac{1}{4} = 0.$$

- S1: Each non-leaf in F is not adjacent to W.
- S2: Each leaf is adjacent to at most one vertex of W.
- S3: For any $y \in W$ if it is adjacent to F, then y has at most one neighbour in W.

- S1: Each non-leaf in F is not adjacent to W.
- \bullet S2: Each leaf is adjacent to at most one vertex of W.
- S3: For any $y \in W$ if it is adjacent to F, then y has at most one neighbour in W.
- If $F \neq \emptyset$, then there exists a vertex $y \in W$ adjacent to the tree F.
- $d_G(y) \ge 3$, so y is adjacent to two vertices $x, x' \in V(F)$. Connect y to x. Since it is impossible to perform S1 or S2, the vertex x' is a leaf in the tree F and is adjacent to exactly one vertex from W, which is y.
- Therefore, in the new tree,

- S1: Each non-leaf in F is not adjacent to W.
- S2: Each leaf is adjacent to at most one vertex of W.
- S3: For any $y \in W$ if it is adjacent to F, then y has at most one neighbour in W.
- If $F \neq \emptyset$, then there exists a vertex $y \in W$ adjacent to the tree F.
- $d_G(y) \geq 3$, so y is adjacent to two vertices $x, x' \in V(F)$. Connect y to x. Since it is impossible to perform S1 or S2, the vertex x' is a leaf in the tree F and is adjacent to exactly one vertex from W, which is y.
- Therefore, in the new tree, x' is a dead vertex. Thus, $\Delta v = 1$, $\Delta b \geq 1$, and

$$P(S4) \ge \frac{1}{4} - \frac{1}{4} \ge 0.$$

Construction of the Base Tree.

• We want to start with a base tree F' such that $\alpha(F') \geq \frac{3}{2}$. Then we will explain why, during the construction process, an additional $\frac{1}{2}$ will be added on top of the gains calculated for the steps. Let us consider two cases.

Case B1. The graph G has a vertex a of degree at least 4.

• The base tree F' is a tree where the vertex a is connected to $k \geq 4$ vertices from its neighborhood. We have:

$$v(F') =?, \quad u(F') =?,$$

and

$$\alpha(F') \ge ?$$

Construction of the Base Tree.

• We want to start with a base tree F' such that $\alpha(F') \geq \frac{3}{2}$. Then we will explain why, during the construction process, an additional $\frac{1}{2}$ will be added on top of the gains calculated for the steps. Let us consider two cases.

Case B1. The graph G has a vertex a of degree at least 4.

• The base tree F' is a tree where the vertex a is connected to $k \geq 4$ vertices from its neighborhood. We have:

$$v(F') = k + 1, \quad u(F') = k,$$

and

$$\alpha(F') \ge \frac{3}{4} \cdot k - \frac{1}{4} \cdot (k+1) = \frac{2k-1}{4} > \frac{3}{2}.$$

Case B2. All vertices in G have degree 3.

• First, consider a tree F', where a vertex a is connected to three vertices b_1, b_2, b_3 from its neighborhood. Clearly,

$$\alpha(F') \geq$$

Case B2. All vertices in G have degree 3.

• First, consider a tree F', where a vertex a is connected to three vertices b_1, b_2, b_3 from its neighborhood. Clearly,

$$\alpha(F') \ge \frac{3}{4} \cdot 3 - \frac{1}{4} \cdot 4 = \frac{5}{4}.$$

- We are short by $\frac{1}{4}$, and if one of the three leaves of F' is dead, it contributes an additional $\frac{1}{4}$, making $\alpha(F') \geq \frac{3}{2}$.
- The remaining case is when each of the vertices b_1, b_2, b_3 is adjacent to at least one vertex outside V(F').
- In our case, all vertices of G have degree 3, and the sum of the degrees of the vertices in the induced subgraph $G(\{a, b_1, b_2, b_3\})$ is even. Therefore, one of the vertices b_1, b_2, b_3 must be adjacent to at least two vertices outside V(F').
- Then, we perform step S2 and add a gain of $\frac{1}{4}$, which suffices.

To complete the proof of the theorem, it remains to show that the steps of the construction contribute an additional gain of at least $\frac{1}{2}$. To do this, let us analyze the end of the construction process.

- If the last step was S1, its gain is at least $\frac{1}{2}$.
- Suppose the last step was S2 or S3. In this case, we added two new leaves, which must be dead since no more steps can be performed.
- This contributes an additional gain of at least $\frac{1}{2}$. Note that even if the last step was S2 described in Case B2, the gain from these two dead vertices was not accounted for in that step.
- Suppose the last step was S4. Then, the added vertex y (see figure) turned out to be dead (contributing $\frac{1}{4}$), meaning that y was adjacent only to vertices in the tree F.
- However, $d_G(y) = 3$, meaning there were three such vertices, not just one, as accounted for in the description of step S4. Thus, we find two additional dead vertices, contributing $\frac{1}{2}$, thereby completing the proof of the theorem.

Definition. Let T be a spanning tree of a connected graph G.

- For any edge $e \in E(G) \setminus E(T)$, the graph T + e contains a unique cycle C_e , which passes through e. We call C_e the fundamental cycle of the edge e with respect to the tree T.
- Let $f \in E(C_e)$, $f \neq e$. Then T' = T + e f is also a spanning tree of G. We say that T' is obtained from T by replacing the edge e with f.

Definition.

- Consider ordered sets $\mathfrak{T} = (T_1, \dots, T_k)$ of k spanning trees of the graph G. Let \mathfrak{T} be the set of all such ordered sets.
- Define $E(\mathfrak{T}) = E(T_1) \cup \cdots \cup E(T_k)$ and $e(\mathfrak{T}) = |E(\mathfrak{T})|$.
- A sequence of edges e_0, \ldots, e_n is called a *sequence of replacements* for \mathfrak{T} , starting with e_0 , if:
 - $e_n \notin E(\mathfrak{T});$
 - For every i < n, there exists an index s(i) such that $e_i \in E(T_{s(i)})$, and e_{i+1} lies on the fundamental cycle of e_i with respect to the tree $T_{s(i)}$.